Biofertilizers containing plant growth promoting rhizobacteria enhance nutrient uptake and improve the growth and yield of chickpea plants in an arid environment

Daily Zen Mews


  • Borase, D. et al. Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Eco. Indicat. 114, 106322 (2020).

    Article 
    MATH 

    Google Scholar 

  • FAOSTAT. Food and Agriculture Organization of the United Nations (2020).

  • Choudhary, P., Singh, G., Reddy, G. L. & Jat, B. L. Effect of bio-fertilizer on different varieties of blackgram (Vigna mungo L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 302–316 (2017).

    Article 
    MATH 

    Google Scholar 

  • Amiri DehAhmadi, S., Parsa, M., Bannayan, M., Nassiri Mahallati, M. & Deihimfard, R. Yield gap analysis of chickpea under semi-arid conditions: A simulation study. Int. J. Plant Prod. 8, 531–548 (2014).

    Google Scholar 

  • Gouda, S. et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206, 131–140 (2018).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Otieno, N. et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 6, 745 (2015).

    Google Scholar 

  • Shen, H. et al. A complex inoculant of N2-fixing, P-and K-solubilizing bacteria from a purple soil improves the growth of kiwifruit (Actinidia chinensis) plantlets. Front. Microbiol. 7, 841 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ruzzi, M. & Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hort. 196, 124–134 (2015).

    Article 
    MATH 

    Google Scholar 

  • Cakmakçi, R., Dönmez, F., Aydın, A. & Şahin, F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38, 1482–1487 (2006).

    Article 
    MATH 

    Google Scholar 

  • Zahir, Z. A. & Arshad, M. Perspectives in Agriculture Vol. 81 (Elsevier, 2004).

    MATH 

    Google Scholar 

  • Shaharoona, B., Arshad, M., Zahir, Z. A. & Khalid, A. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 38, 2971–2975 (2006).

    Article 

    Google Scholar 

  • Basak, B., Jat, R., Gajbhiye, N., Saha, A. & Manivel, P. Organic nutrient management through manures, microbes and biodynamic preparation improves yield and quality of Kalmegh (Andrograghis paniculata), and soil properties. J. Plant Nut. 43, 548–562 (2020).

    Article 

    Google Scholar 

  • Prajapati, K. Impact of potassium solubilizing bacteria on growth and yield of mungebean Vigna radiata. Indian J. Appl. Res. 6, 390–392 (2016).

    MATH 

    Google Scholar 

  • Hussain, A. et al. Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy 10, 39 (2020).

    Article 

    Google Scholar 

  • Kumar, J., Kumar, S. & Prakash, V. Effect of biofertilizers and phosphorus levels on soil fertility, yield and nodulation in chickpea (Cicer arietinum L.). J. Indian Soc. Soil Sci. 67, 199–203 (2019).

    Article 
    MATH 

    Google Scholar 

  • Şahin, F., Çakmakçi, R. & Kantar, F. Sugar beet and barley yields in relation to inoculation with N 2-fixing and phosphate solubilizing bacteria. Plant Soil 265, 123–129 (2004).

    Article 

    Google Scholar 

  • Ullah, N. et al. Integrated effect of algal biochar and plant growth promoting rhizobacteria on physiology and growth of maize under deficit irrigations. J. Soil Sci. Plant Nutr. 20, 346–356 (2020).

    Article 
    MATH 

    Google Scholar 

  • Dong, S., Zhang, B., Hou, W., Zhou, X. & Gao, Q. Differential effects of sulfur fertilization on soil microbial communities and maize yield enhancement. Agronomy 14, 2251 (2024).

    Article 
    MATH 

    Google Scholar 

  • Paul, E. & Frey, S. Soil Microbiology, Ecology and Biochemistry (Elsevier, 2023).

    MATH 

    Google Scholar 

  • Havlin, J. L., Tisdale, S. L., Nelson, W. L. & Beaton, J. D. Soil Fertility and Fertilizers (Pearson Education India, 2016).

    MATH 

    Google Scholar 

  • Deshbhratar, P., Singh, P., Jambhulkar, A. & Ramteke, D. Effect of sulphur and phosphorus on yield, quality and nutrient status of pigeonpea (Cajanus cajan). J. Environ. Biol. 31, 933 (2010).

    PubMed 

    Google Scholar 

  • Malhi, S. & Gill, K. Interactive effects of N and S fertilizers on canola yield and seed quality on S-deficient Gray Luvisol soils in northeastern Saskatchewan. Can. J. Plant Sci. 87, 211–222 (2007).

    Article 

    Google Scholar 

  • Kaplan, M. & Orman, Ş. Effect of elemental sulphur and sulphur containing waste in a calcareous soil in Turkey. J. Plant Nutr. 21, 1655–1665 (1998).

    Article 

    Google Scholar 

  • Burkitbayev, M. et al. Effect of sulfur-containing agrochemicals on growth, yield, and protein content of soybeans (Glycine max (L.) Merr). Saudi J. Biol. Sci. 28, 891–900 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Etesami, H. & Maheshwari, D. K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 156, 225–246 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Thompson, J. Counting viable Azotobacter chroococcum in vertisols. Plant Soil 117, 17–29 (1989).

    Article 
    MATH 

    Google Scholar 

  • Ahmad, F., Ahmad, I. & Khan, M. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163, 173–181 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, C. & Kong, F. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl. Soil Ecol. 82, 18–25 (2014).

    Article 
    MATH 

    Google Scholar 

  • Starosvetsky, J., Zukerman, U. & Armon, R. H. A simple medium modification for isolation, growth and enumeration of Acidithiobacillus thiooxidans (syn. Thiobacillus thiooxidans) from water samples. J. Microbiol. Method 92, 178–182 (2013).

    Article 

    Google Scholar 

  • Lichtenthaler, H. K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 148, 350–382 (1987).

    Article 
    MATH 

    Google Scholar 

  • Piper, C. S. Soil and Plant Analysis (Scientific Publishers, 2017).

    MATH 

    Google Scholar 

  • Jackson, M. L. Soil chemical analysis-advanced course. Soil Chem. Anal. Adv. Course 171, 432–433 (2006).

    MATH 

    Google Scholar 

  • Jones, D. B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins Vol. 183 (US Department of Agriculture, 1931).

    MATH 

    Google Scholar 

  • Arif, M. S. et al. Associative interplay of plant growth promoting rhizobacteria (Pseudomonas aeruginosa QS40) with nitrogen fertilizers improves sunflower (Helianthus annuus L.) productivity and fertility of aridisol. Appl. Soil Eco. 108, 238–247 (2016).

    Article 
    MATH 

    Google Scholar 

  • Durán, P. et al. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fert. Soil 50, 983–990 (2014).

    Article 
    MATH 

    Google Scholar 

  • Herencia, J., Pérez-Romero, L., Daza, A. & Arroyo, F. Chemical and biological indicators of soil quality in organic and conventional Japanese plum orchards. Biol. Agr. Hort. 1–20 (2020).

  • Sharma, R., Chauhan, A. & Shirkot, C. Characterization of plant growth promoting Bacillus strains and their potential as crop protectants against Phytophthora capsici in tomato. Biol. Agr. Hort. 31, 230–244 (2015).

    Article 
    MATH 

    Google Scholar 

  • Yasmin, F., Othman, R. & Maziz, M. N. H. Yield and nutrient content of sweet potato in response of plant growth-promoting rhizobacteria (PGPR) inoculation and N fertilization. Jordan J. Biol. Sci. 13, 117–122 (2020).

    Google Scholar 

  • Verma, K. K. et al. Regulatory mechanisms of plant rhizobacteria on plants to the adaptation of adverse agroclimatic variables. Front. Plant Sci. 15, 1377793 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glick, B. R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012, 963401 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Dzvene, A. R. & Chiduza, C. Application of biofertilizers for enhancing beneficial microbiomes in push-pull cropping systems: A review. Bacteria 3, 271–286 (2024).

    Article 

    Google Scholar 

  • Neal, A. L., Kabengi, N., Grider, A. & Bertsch, P. M. Can the soil bacterium Cupriavidus necator sense ZnO nanomaterials and aqueous Zn2+ differentially?. Nanotoxicology 6, 371–380 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Verma, K. K. et al. Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. Plant Signal Behav. 17, 2104004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paratey, P. & Wani, P. Response of soybean (cv. JS-335) to phosphate solubilizing biofertilizers. Leg. Res. 28, 268–271 (2005).

    Google Scholar 

  • Kaur, D., Singh, G. & Sharma, P. Symbiotic parameters, productivity and profitability in Kabuli Chickpea (Cicer arietinum L.) as influenced by application of phosphorus and biofertilizers. J. Soil Sci. Plant Nutr. 20, 2267–2282 (2020).

    Article 
    MATH 

    Google Scholar 

  • Kuan, K. B., Othman, R., Abdul Rahim, K. & Shamsuddin, Z. H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PloS one 11, e0152478 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rezaei-Chiyaneh, E. et al. Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition. Sci. Hort. 261, 108951 (2020).

    Article 
    MATH 

    Google Scholar 

  • Bashan, Y., de Bashan, L. E., Prabhu, S. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant soil 378, 1–33 (2014).

    Article 
    MATH 

    Google Scholar 

  • Kaur, N., Sharma, P. & Sharma, S. Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and bio-fertilizer in chickpea (Cicer arietinum L.). Leg. Res. 38, 367–374. https://doi.org/10.5958/0976-0571.2015.00099.5 (2015).

    Article 
    MATH 

    Google Scholar 

  • Elkoca, E., Kantar, F. & Sahin, F. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J. Plant Nutr. 31, 157–171 (2007).

    Article 

    Google Scholar 

  • Yu, Y.-Y. et al. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. J. Plant Nutr. Soil Sci. 182, 560–569 (2019).

    Article 
    MATH 

    Google Scholar 

  • Joshi, D., Chandra, R., Suyal, D. C. & Kumar, S. Impacts of bioinoculants Pseudomonas jesenii MP1 and Rhodococcus qingshengii S10107 on chickpea (Cicer arietinum L.) yield and soil nitrogen status. Pedosphere 29, 388–399 (2019).

    Article 

    Google Scholar 

  • Anli, M. et al. Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front. Plant Sci. 11, 516818 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bhattacharjya, S. & Chandra, R. Effect of inoculation methods of Mesorhizobium ciceri and PGPR in chickpea (Cicer areietinum L.) on symbiotic traits, yields, nutrient uptake and soil properties. Leg. Res. 36, 331–337 (2013).

    Google Scholar 

  • Pal, V., Singh, G. & Dhaliwal, S. S. Symbiotic parameters, growth, productivity and profitability of chickpea as influenced by zinc sulphate and urea application. J. Soil Sci. Plant Nutr., 1–13 (2019).

  • Bashir, K. et al. Bio-associative effect of rhizobacteria on nodulation and yield of mungbean (Vigna radiata L.) under saline conditions. J. Appl. Agr. Biotechnol. 1, 23–37 (2016).

    MATH 

    Google Scholar 

  • Hafezi Ghehestani, M. M., Azari, A., Rahimi, A., Maddah-Hosseini, S. & Ahmadi-Lahijani, M. J. Bacterial siderophore improves nutrient uptake, leaf physiochemical characteristics, and grain yield of cumin (Cuminum cyminum L.) ecotypes. J Plant Nut, 1–13 (2021).

  • Jalayerinia, N., Nezami, A., Nabati, J. & Ahmadi-Lahijani, M. J. A combination of biochemical fertilizers enhances plant nutrient absorption, water deficit tolerance, and yield of chickpea (Cicer arietinum L.) plants under irrigation regimes. J Plant Nut, 1–19 (2024).

  • Moradzadeh, S., Siavash Moghaddam, S., Rahimi, A., Pourakbar, L. & Sayyed, R. Combined bio-chemical fertilizers ameliorate agro-biochemical attributes of black cumin (Nigella sativa L.). Sci. Rep. 11, 11399 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, L. et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 10, 177 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Verma, K. K. et al. Synergistic interactions of nanoparticles and plant growth promoting rhizobacteria enhancing soil-plant systems: A multigenerational perspective. Front. Plant Sci. 15, 1376214 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, B. L. et al. Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J. Plant Nutr. Soil Sci. 178, 658–670 (2015).

    Article 
    MATH 

    Google Scholar 

  • Singh, A., Sachan, A., Pathak, R. & Srivastava, S. Study on the effects of PSB and rhizobium with their combinations on nutrient concentration and uptake of chickpea (Cicer arietinum L.). J. Pharmacog. Phytochem. 7, 1591–1593 (2018).

    Google Scholar 

  • Rawat, N. et al. Psyhcrotolerant bio-inoculants and their co-inoculation to improve Cicer arietinum growth and soil nutrient status for sustainable mountain agriculture. J. Soil Sci. Plant Nutr. 19, 639–647 (2019).

    Article 

    Google Scholar 

  • Mahmood, S. et al. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front. Plant Sci. 7, 876 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Adesemoye, A., Torbert, H. & Kloepper, J. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 54, 876–886 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kohler, J., Hernández, J. A., Caravaca, F. & Roldán, A. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65, 245–252 (2009).

    Article 

    Google Scholar 

  • Abbaszadeh-Dahaji, P., Masalehi, F. & Akhgar, A. Improved growth and nutrition of Sorghum (Sorghum bicolor) plants in a low-Fertility calcareous soil treated with plant growth–promoting rhizobacteria and Fe-EDTA. J. Soil Sci. Plant Nutr. 20, 31–42 (2020).

    Article 

    Google Scholar 

  • Hassan, W. et al. Phosphorus solubilizing bacteria and growth and productivity of mung bean (Vigna radiata). Pak. J. Bot. 49, 331–336 (2017).

    MATH 

    Google Scholar 

  • Cordero, I. et al. Rhizospheric microbial community of Caesalpinia spinosa (Mol.) Kuntze in conserved and deforested zones of the Atiquipa fog forest in Peru. Appl. Soil Ecol. 114, 132–141 (2017).

    Article 

    Google Scholar 




  • Source link

    Leave a Comment