Winter subglacial meltwater detected in a Greenland fjord

Daily Zen Mews


  • Mortensen, J. et al. On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. Oceans 118, 1382–1395 (2013).

    Article 

    Google Scholar 

  • Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys.Oceanogr. 45, 2169–2185 (2015).

    Article 

    Google Scholar 

  • Straneo, F. & Cenedese, C. The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci. 7, 89–112 (2015).

    Article 

    Google Scholar 

  • Mortensen, J., Bendtsen, J., Lennert, K. & Rysgaard, S. Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64° N). J. Geophys. Res. Earth Surf. 119, 2591–2603 (2014).

    Article 

    Google Scholar 

  • Rignot, E. et al. Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophys. Res. Lett. 43, 6374–6382 (2016).

    Article 

    Google Scholar 

  • Jackson, R. et al. Meltwater intrusions reveal mechanisms for rapid submarine melt at a tidewater glacier. Geophys. Res. Lett. 47, e2019GL085335 (2020).

    Article 

    Google Scholar 

  • Mortensen, J. et al. Subglacial discharge and its down-fjord transformation in west Greenland fjords with an ice mélange. J. Geophys. Res. Oceans 125, e2020JC016301 (2020).

    Article 

    Google Scholar 

  • Beckmann, J. et al. Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model. Cryosphere 13, 2281–2301 (2019).

    Article 

    Google Scholar 

  • Slater, D. A. et al. Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution. Cryosphere 14, 985–1008 (2020).

    Article 

    Google Scholar 

  • Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).

    Article 

    Google Scholar 

  • Kanna, N. et al. Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland. J. Geophys. Res. Biogeosci. 123, 1666–1682 (2018).

    Article 

    Google Scholar 

  • Hopwood, M. J. et al. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).

    Article 

    Google Scholar 

  • Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nishizawa, B. et al. Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES J. Mar. Sci. 77, 711–720 (2019).

    Article 

    Google Scholar 

  • Jackson, R. H., Straneo, F. & Sutherland, D. A. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7, 503–508 (2014).

    Article 
    CAS 

    Google Scholar 

  • Vonnahme, T. R. et al. Impact of winter freshwater from tidewater glaciers on fjords in Svalbard and Greenland; a review. Prog. Oceanogr. 219, 103144 (2023).

    Article 

    Google Scholar 

  • Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G. & Waller, R. I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 11, 759 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sommers, A. et al. Subglacial hydrology modeling predicts high winter water pressure and spatially variable transmissivity at Helheim Glacier, Greenland. J. Glaciol. 69, 1556–1568 (2023).

  • Hamilton, A. K., Mueller, D. & Laval, B. E. Ocean modification and seasonality in a northern Ellesmere Island glacial fjord prior to ice shelf breakup: Milne Fiord. J. Geophys. Res. Oceans 126, e2020JC016975 (2021).

    Article 

    Google Scholar 

  • Fransson, A. et al. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years. J. Geophys. Res. Oceans 120, 2413–2429 (2015).

    Article 
    CAS 

    Google Scholar 

  • Marchenko, A. V., Morozov, E. G. & Marchenko, N. A. Supercooling of seawater near the glacier front in a fjord. Earth Sci. Res. 6, 97–108 (2017).

    Article 

    Google Scholar 

  • Vonnahme, T. R. et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier. Cryosphere 15, 2083–2107 (2021).

    Article 

    Google Scholar 

  • Karlsson, N. B. et al. A data set of monthly freshwater fluxes from the Greenland ice sheet’s marine-terminating glaciers on a glacier-basin scale 2010–2020. GEUS Bull. 53, 8388 (2023).

    Article 

    Google Scholar 

  • Fraser, N. J., Inall, M. E., Magaldi, M. G., Haine, T. W. N. & Jones, S. C. Wintertime fjord-shelf interaction and ice sheet melting in southeast Greenland. J. Geophys. Res. Oceans 123, 9156–9177 (2018).

    Article 

    Google Scholar 

  • Hager, A. O., Sutherland, D. A. & Slater, D. A. Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers. Cryosphere 18, 911–932 (2024).

    Article 

    Google Scholar 

  • Mankoff, K. D. et al. Greenland liquid water discharge from 1958 through 2019. Earth Syst. Sci. Data 12, 2811–2841 (2020).

    Article 

    Google Scholar 

  • Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).

    Article 

    Google Scholar 

  • Poulsen, E., Rysgaard, S., Hansen, K. & Karlsson, N. B. Uncrewed aerial vehicle with onboard winch system for rapid, cost-effective, and safe oceanographic profiling in hazardous and inaccessible areas. HardwareX 18, e00518 (2024).

    Article 

    Google Scholar 

  • OMG CTD Conductivity Temperature Depth v.1 (OMG, accessed 18 December 2023); https://doi.org/10.5067/OMGEV-CTDS1

  • Fenty, I. et al. Oceans melting Greenland: early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).

    Article 

    Google Scholar 

  • Gade, H. G. Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr. 9, 189–198 (1979).

    Article 

    Google Scholar 

  • Straneo, F. et al. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4, 322–327 (2011).

    Article 
    CAS 

    Google Scholar 

  • Hoffman, M. J. et al. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed. Nat. Commun. 7, 13903 (2016).

  • MacGregor, J. A. et al. GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland ice sheet. Cryosphere 16, 3033–3049 (2022).

    Article 

    Google Scholar 

  • Karlsson, N. B. et al. A first constraint on basal melt-water production of the Greenland ice sheet. Nat. Commun. 12, 3461 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tsai, V. C. & Ruan, X. A simple physics-based improvement to the Positive Degree Day model. J. Glaciol. 64, 661–668 (2018).

    Article 

    Google Scholar 

  • Fausto, R., Mernild, S., Hasholt, B., Ahlstrøm, A. & Knudsen, N. Modeling suspended sediment concentration and transport, Mittivakkat Glacier, southeast Greenland. Arct. Antarct. Alp. Res. 44, 306–318 (2012).

    Article 

    Google Scholar 

  • Cooper, M. G. et al. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone. Cryosphere 12, 955–970 (2018).

    Article 

    Google Scholar 

  • Nienow, P. W., Sole, A. J., Slater, D. A. & Cowton, T. R. Recent advances in our understanding of the role of meltwater in the Greenland ice sheet system. Curr. Clim. Change Rep. 3, 330–344 (2017).

    Article 

    Google Scholar 

  • Ran, J. et al. Vertical bedrock shifts reveal summer water storage in Greenland ice sheet. Nature 635, 108–113 (2024).

    Article 
    CAS 

    Google Scholar 

  • Pitcher, L. H. et al. Direct observation of winter meltwater drainage from the Greenland ice sheet. Geophys. Res. Lett. 47, e2019GL086521 (2020).

    Article 

    Google Scholar 

  • Chu, W. et al. Extensive winter subglacial water storage beneath the Greenland ice sheet. Geophys. Res. Lett. 43, 12484–12492 (2016).

    Article 

    Google Scholar 

  • Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).

    Article 

    Google Scholar 

  • How, P. et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 11, 4481 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wengrove, M. E., Pettit, E. C., Nash, J. D., Jackson, R. H. & Skyllingstad, E. D. Melting of glacier ice enhanced by bursting air bubbles. Nat. Geosci. 16, 871–876 (2014).

    Article 

    Google Scholar 

  • Flowers, G. E. Hydrology and the future of the Greenland ice sheet. Nat. Commun. 9, 2729 (2018).

    Article 

    Google Scholar 

  • Cowton, T. R., Slater, D. A. & Inall, M. E. Subglacial-discharge plumes drive widespread subsurface warming in northwest Greenland’s fjords. Geophys. Res. Lett. 50, e2023GL103801 (2023).

    Article 

    Google Scholar 

  • Rooijakkers, F. J., Poulsen, E., Ruiz-Castillo, E. & Rysgaard, S. Evidence suggesting frazil ice crystal formation at the front of Hisinger Glacier in Dickson Fjord, northeast Greenland. Preprint at https://doi.org/10.5194/egusphere-2024-2168 (2024).

  • Rysgaard, S. et al. An updated view on water masses on the pan-west Greenland continental shelf and their link to proglacial fjords. J. Geophys. Res. Oceans 125, e2019JC015564 (2020).

    Article 

    Google Scholar 

  • Meire, L. et al. Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland). J. Geophys. Res. Biogeosci. 121, 1581–1592 (2016).

    Article 

    Google Scholar 

  • Meire, L. et al. Glacier retreat alters downstream fjord ecosystem structure and function in Greenland. Nat. Geosci. 16, 671–674 (2023).

    Article 
    CAS 

    Google Scholar 

  • Carroll, D. et al. Subglacial discharge-driven renewal of tidewater glacier fjords. J. Geophys. Res. Oceans 122, 6611–6629 (2017).

    Article 

    Google Scholar 

  • Moon, T. et al. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nat. Geosci. 11, 49–54 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M. & Charette, M. A. Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nat. Geosci. 12, 34–39 (2019).

    Article 
    CAS 

    Google Scholar 

  • Torsvik, T. et al. Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard. Estuar. Coast. Shelf Sci. 220, 152–165 (2019).

    Article 

    Google Scholar 

  • Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).

    Article 

    Google Scholar 

  • Morlighem, M. et al. IceBridge BedMachine Greenland v.5 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2022); https://nsidc.org/data/IDBMG4/versions/5

  • Solgaard, A. et al. Greenland ice velocity maps from the PROMICE project. Earth Syst. Sci. Data 13, 3491–3512 (2021).

    Article 

    Google Scholar 

  • Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).

    Article 

    Google Scholar 

  • How, P. et al. PROMICE and GC-Net automated weather station data in Greenland. GEUS Dataverse https://doi.org/10.22008/FK2/IW73UU (2022).

  • Yang, X. et al. C3S Arctic Regional Reanalysis – Full System Documentation (Copernicus Climate Change Service, 2021); https://confluence.ecmwf.int/display/CKB/Copernicus+Arctic+Regional+Reanalysis+%28CARRA%29%3A+Full+system+documentation

  • Lea, J. M. The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface margins. Earth Surf. Dyn. 6, 551–561 (2018).

    Article 

    Google Scholar 




  • Source link

    Leave a Comment