Mortensen, J. et al. On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res. Oceans 118, 1382–1395 (2013).
Google Scholar
Carroll, D. et al. Modeling turbulent subglacial meltwater plumes: implications for fjord-scale buoyancy-driven circulation. J. Phys.Oceanogr. 45, 2169–2185 (2015).
Google Scholar
Straneo, F. & Cenedese, C. The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci. 7, 89–112 (2015).
Google Scholar
Mortensen, J., Bendtsen, J., Lennert, K. & Rysgaard, S. Seasonal variability of the circulation system in a west Greenland tidewater outlet glacier fjord, Godthåbsfjord (64° N). J. Geophys. Res. Earth Surf. 119, 2591–2603 (2014).
Google Scholar
Rignot, E. et al. Modeling of ocean-induced ice melt rates of five west Greenland glaciers over the past two decades. Geophys. Res. Lett. 43, 6374–6382 (2016).
Google Scholar
Jackson, R. et al. Meltwater intrusions reveal mechanisms for rapid submarine melt at a tidewater glacier. Geophys. Res. Lett. 47, e2019GL085335 (2020).
Google Scholar
Mortensen, J. et al. Subglacial discharge and its down-fjord transformation in west Greenland fjords with an ice mélange. J. Geophys. Res. Oceans 125, e2020JC016301 (2020).
Google Scholar
Beckmann, J. et al. Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model. Cryosphere 13, 2281–2301 (2019).
Google Scholar
Slater, D. A. et al. Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution. Cryosphere 14, 985–1008 (2020).
Google Scholar
Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).
Google Scholar
Kanna, N. et al. Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in Bowdoin Fjord, northwestern Greenland. J. Geophys. Res. Biogeosci. 123, 1666–1682 (2018).
Google Scholar
Hopwood, M. J. et al. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).
Google Scholar
Hopwood, M. J. et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).
Google Scholar
Nishizawa, B. et al. Contrasting assemblages of seabirds in the subglacial meltwater plume and oceanic water of Bowdoin Fjord, northwestern Greenland. ICES J. Mar. Sci. 77, 711–720 (2019).
Google Scholar
Jackson, R. H., Straneo, F. & Sutherland, D. A. Externally forced fluctuations in ocean temperature at Greenland glaciers in non-summer months. Nat. Geosci. 7, 503–508 (2014).
Google Scholar
Vonnahme, T. R. et al. Impact of winter freshwater from tidewater glaciers on fjords in Svalbard and Greenland; a review. Prog. Oceanogr. 219, 103144 (2023).
Google Scholar
Cook, S. J., Swift, D. A., Kirkbride, M. P., Knight, P. G. & Waller, R. I. The empirical basis for modelling glacial erosion rates. Nat. Commun. 11, 759 (2020).
Google Scholar
Sommers, A. et al. Subglacial hydrology modeling predicts high winter water pressure and spatially variable transmissivity at Helheim Glacier, Greenland. J. Glaciol. 69, 1556–1568 (2023).
Hamilton, A. K., Mueller, D. & Laval, B. E. Ocean modification and seasonality in a northern Ellesmere Island glacial fjord prior to ice shelf breakup: Milne Fiord. J. Geophys. Res. Oceans 126, e2020JC016975 (2021).
Google Scholar
Fransson, A. et al. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years. J. Geophys. Res. Oceans 120, 2413–2429 (2015).
Google Scholar
Marchenko, A. V., Morozov, E. G. & Marchenko, N. A. Supercooling of seawater near the glacier front in a fjord. Earth Sci. Res. 6, 97–108 (2017).
Google Scholar
Vonnahme, T. R. et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier. Cryosphere 15, 2083–2107 (2021).
Google Scholar
Karlsson, N. B. et al. A data set of monthly freshwater fluxes from the Greenland ice sheet’s marine-terminating glaciers on a glacier-basin scale 2010–2020. GEUS Bull. 53, 8388 (2023).
Google Scholar
Fraser, N. J., Inall, M. E., Magaldi, M. G., Haine, T. W. N. & Jones, S. C. Wintertime fjord-shelf interaction and ice sheet melting in southeast Greenland. J. Geophys. Res. Oceans 123, 9156–9177 (2018).
Google Scholar
Hager, A. O., Sutherland, D. A. & Slater, D. A. Local forcing mechanisms challenge parameterizations of ocean thermal forcing for Greenland tidewater glaciers. Cryosphere 18, 911–932 (2024).
Google Scholar
Mankoff, K. D. et al. Greenland liquid water discharge from 1958 through 2019. Earth Syst. Sci. Data 12, 2811–2841 (2020).
Google Scholar
Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).
Google Scholar
Poulsen, E., Rysgaard, S., Hansen, K. & Karlsson, N. B. Uncrewed aerial vehicle with onboard winch system for rapid, cost-effective, and safe oceanographic profiling in hazardous and inaccessible areas. HardwareX 18, e00518 (2024).
Google Scholar
OMG CTD Conductivity Temperature Depth v.1 (OMG, accessed 18 December 2023); https://doi.org/10.5067/OMGEV-CTDS1
Fenty, I. et al. Oceans melting Greenland: early results from NASA’s ocean-ice mission in Greenland. Oceanography 29, 72–83 (2016).
Google Scholar
Gade, H. G. Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr. 9, 189–198 (1979).
Google Scholar
Straneo, F. et al. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4, 322–327 (2011).
Google Scholar
Hoffman, M. J. et al. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed. Nat. Commun. 7, 13903 (2016).
MacGregor, J. A. et al. GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland ice sheet. Cryosphere 16, 3033–3049 (2022).
Google Scholar
Karlsson, N. B. et al. A first constraint on basal melt-water production of the Greenland ice sheet. Nat. Commun. 12, 3461 (2021).
Google Scholar
Tsai, V. C. & Ruan, X. A simple physics-based improvement to the Positive Degree Day model. J. Glaciol. 64, 661–668 (2018).
Google Scholar
Fausto, R., Mernild, S., Hasholt, B., Ahlstrøm, A. & Knudsen, N. Modeling suspended sediment concentration and transport, Mittivakkat Glacier, southeast Greenland. Arct. Antarct. Alp. Res. 44, 306–318 (2012).
Google Scholar
Cooper, M. G. et al. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone. Cryosphere 12, 955–970 (2018).
Google Scholar
Nienow, P. W., Sole, A. J., Slater, D. A. & Cowton, T. R. Recent advances in our understanding of the role of meltwater in the Greenland ice sheet system. Curr. Clim. Change Rep. 3, 330–344 (2017).
Google Scholar
Ran, J. et al. Vertical bedrock shifts reveal summer water storage in Greenland ice sheet. Nature 635, 108–113 (2024).
Google Scholar
Pitcher, L. H. et al. Direct observation of winter meltwater drainage from the Greenland ice sheet. Geophys. Res. Lett. 47, e2019GL086521 (2020).
Google Scholar
Chu, W. et al. Extensive winter subglacial water storage beneath the Greenland ice sheet. Geophys. Res. Lett. 43, 12484–12492 (2016).
Google Scholar
Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. 3, 106–124 (2022).
Google Scholar
How, P. et al. Greenland-wide inventory of ice marginal lakes using a multi-method approach. Sci. Rep. 11, 4481 (2021).
Google Scholar
Wengrove, M. E., Pettit, E. C., Nash, J. D., Jackson, R. H. & Skyllingstad, E. D. Melting of glacier ice enhanced by bursting air bubbles. Nat. Geosci. 16, 871–876 (2014).
Google Scholar
Flowers, G. E. Hydrology and the future of the Greenland ice sheet. Nat. Commun. 9, 2729 (2018).
Google Scholar
Cowton, T. R., Slater, D. A. & Inall, M. E. Subglacial-discharge plumes drive widespread subsurface warming in northwest Greenland’s fjords. Geophys. Res. Lett. 50, e2023GL103801 (2023).
Google Scholar
Rooijakkers, F. J., Poulsen, E., Ruiz-Castillo, E. & Rysgaard, S. Evidence suggesting frazil ice crystal formation at the front of Hisinger Glacier in Dickson Fjord, northeast Greenland. Preprint at https://doi.org/10.5194/egusphere-2024-2168 (2024).
Rysgaard, S. et al. An updated view on water masses on the pan-west Greenland continental shelf and their link to proglacial fjords. J. Geophys. Res. Oceans 125, e2019JC015564 (2020).
Google Scholar
Meire, L. et al. Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland). J. Geophys. Res. Biogeosci. 121, 1581–1592 (2016).
Google Scholar
Meire, L. et al. Glacier retreat alters downstream fjord ecosystem structure and function in Greenland. Nat. Geosci. 16, 671–674 (2023).
Google Scholar
Carroll, D. et al. Subglacial discharge-driven renewal of tidewater glacier fjords. J. Geophys. Res. Oceans 122, 6611–6629 (2017).
Google Scholar
Moon, T. et al. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nat. Geosci. 11, 49–54 (2018).
Google Scholar
Cape, M. R., Straneo, F., Beaird, N., Bundy, R. M. & Charette, M. A. Nutrient release to oceans from buoyancy-driven upwelling at Greenland tidewater glaciers. Nat. Geosci. 12, 34–39 (2019).
Google Scholar
Torsvik, T. et al. Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard. Estuar. Coast. Shelf Sci. 220, 152–165 (2019).
Google Scholar
Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).
Google Scholar
Morlighem, M. et al. IceBridge BedMachine Greenland v.5 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2022); https://nsidc.org/data/IDBMG4/versions/5
Solgaard, A. et al. Greenland ice velocity maps from the PROMICE project. Earth Syst. Sci. Data 13, 3491–3512 (2021).
Google Scholar
Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).
Google Scholar
How, P. et al. PROMICE and GC-Net automated weather station data in Greenland. GEUS Dataverse https://doi.org/10.22008/FK2/IW73UU (2022).
Yang, X. et al. C3S Arctic Regional Reanalysis – Full System Documentation (Copernicus Climate Change Service, 2021); https://confluence.ecmwf.int/display/CKB/Copernicus+Arctic+Regional+Reanalysis+%28CARRA%29%3A+Full+system+documentation
Lea, J. M. The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface margins. Earth Surf. Dyn. 6, 551–561 (2018).
Google Scholar