Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis (Cambridge University Press, 2001).
AMAP (Arctic Monitoring and Assessment Programme). Impacts of short-lived climate forcers on arctic climate, air quality, and human health. Tromsø https://www.amap.no/documents/download/6939/inline (2021).
Isaksen, K. et al. Exceptional warming over the Barents area. Sci. Rep. 12, 9371. https://doi.org/10.1038/s41598-022-13568-5.C (2022).
Google Scholar
Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184. https://doi.org/10.1038/ngeo20714 (2014).
Google Scholar
Yamanouchi, T. & Takata, K. Rapid change of the Arctic climate system and its global influences-overview of GRENE Arctic climate change research project (2011–2016). Polar Sci. 25, 100548. https://doi.org/10.1016/j.polar.2020.100548 (2020).
Google Scholar
Walsh, J. E. Arctic climate change, variability, and extremes. In Arctic Hydrology, Permafrost and Ecosystems (eds Yang, D. & Kane, D. L.) (Springer, 2021). https://doi.org/10.1007/978-3-030-50930-9_1.
Google Scholar
Chylek, P. et al. Annual mean Arctic amplification 1970–2020: Observed and simulated by CMIP6. Clim. Models Geophys. Res. Lett. 49, 9371. https://doi.org/10.1029/2022GL099371 (2022).
Google Scholar
Chylek, P., Folland, C., Klett, J. D., Lesins, G. & Dubey, M. K. Arctic amplification in the community earth system models (CESM1 and CESM2). Atmosphere 14(5), 820. https://doi.org/10.3390/atmos14050820 (2023).
Google Scholar
Salzmann, M. The polar amplification asymmetry: Role of Antarctic surface height. Earth Syst. Dyn. 8, 323–336. https://doi.org/10.5194/esd-8-323-2017 (2017).
Google Scholar
Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919. https://doi.org/10.1038/s41467-018-04173-0 (2018).
Google Scholar
Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. N. & Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Front. Earth Sci. 8, 9. https://doi.org/10.3389/feart.2021.710036 (2021).
Google Scholar
Serreze, M. C., Holland, M. M. & Stroeveauthors, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315(5818), 1533–1536. https://doi.org/10.1126/science.1139426 (2007).
Google Scholar
Miller, G. H. et al. Arctic amplification: Can the past constrain the future?. Quat. Sci. Rev. 29(15–16), 179–1790. https://doi.org/10.1016/j.quascirev.2010.02.008 (2010).
Google Scholar
Cox, T., Donohoe, A., Armour, K. C., Frierson, D. M. W. & Roe, G. H. Trends in atmospheric heat transport since 1980. J. Clim. 37(5), 1539–1550. https://doi.org/10.1175/JCLI-D-23-0385.1 (2024).
Google Scholar
Kinnard, C. et al. Reconstructed changes in Arctic Sea ice over the past 1,450 years. Nature 479, 509–512. https://doi.org/10.1038/nature10581 (2011).
Google Scholar
United Nations Environment Programme. Global linkages a graphic look at the changing Arctic. https://www.unep.org/resources/publication/global-linkages-graphic-look-changing-arctic (2019).
Lindsay, R. & Schweiger, A. Arctic Sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 9, 269–283. https://doi.org/10.5194/tc-9-269-2015 (2015).
Google Scholar
Simmonds, I. & Li, M. Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity. Ann. N. Y. Acad. Sci. 1504(1), 167–186. https://doi.org/10.1111/nyas.14673 (2021).
Google Scholar
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since. Commun. Earth Environ. 3, 168. https://doi.org/10.1038/s43247-022-00498-3 (2022).
Google Scholar
Cohen, J. A. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637. https://doi.org/10.1038/ngeo2234 (2014).
Google Scholar
Smith, D. M. et al. The Polar amplification model intercomparison project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model. Dev. 12, 1139–1164. https://doi.org/10.5194/gmd-12-1139-2019 (2019).
Google Scholar
Gil-Alana, L. A., Gupta, R., Sauci, L. & Carmona-González, N. Temperature and precipitation in the US states: Long memory, persistence, and time trend. Theor. Appl. Climatol. 150, 1731–1744. https://doi.org/10.1007/s00704-022-04232-z (2022).
Google Scholar
Yuan, N., Franzke, C. L. E., Xiong, F., Fu, Z. & Dong, W. The impact of long-term memory on the climate response to greenhouse gas emissions. Npj Clim. Atmos. Sci. 5, 70 (2022).
Google Scholar
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3(1), 168 (2022).
Google Scholar
Varotsos, C. A., Franzke, C. L. E., Efstathiou, M. N. & Degermendzhi, A. G. Evidence for two abrupt warming events of SST in the last century. Theor. Appl. Climatol. 116, 51–60. https://doi.org/10.1007/s00704-013-0935-8 (2014).
Google Scholar
Varotsos, C. A., Efstathiou, C. M. & Christodoulakis, J. Abrupt changes in global tropospheric temperature. Atmos. Res. 217, 114–119. https://doi.org/10.1016/j.atmosres.2018.11.001 (2019).
Google Scholar
Gershunov, A. & Barnett, T. P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 79(12), 2715–2725 (1998).
Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78(6), 1069–1079 (1997).
Google Scholar
Efstathiou, M. N., Tzanis, C., Cracknell, A. P. & Varotsos, C. A. New features of land and sea surface temperature anomalies. Int. J. Remote Sens. 32(11), 3231–3238. https://doi.org/10.1080/01431161.2010.541504 (2011).
Google Scholar
Kuzmina, S., Johannessen, O. M., Bengtsson, L., Aniskina, O. & Bobylev, L. High northern latitude surface air temperature: Comparison of existing data and creation of a new gridded data set 1900–2000. Tellus A 60, 289–304 (2008).
Google Scholar
Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 23, 3888–3906. https://doi.org/10.1175/2010JCLI3297.1 (2010).
Google Scholar
Blackport, R. & Screen, J. A. Weakened evidence for mid-latitude impacts of Arctic warming. Nat. Clim. Change 10(12), 1065–1066. https://doi.org/10.1038/s41558-020-00954-y (2020).
Google Scholar
Xue, D., Lu, J., Sun, L., Chen, G. & Zhang, Y. Local increase of anticyclonic wave activity over northern Eurasia under amplified Arctic warming. Geofísical. Res. Lett. 44, 3299–3308. https://doi.org/10.1002/2017GL072649 (2017).
Google Scholar
Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29. https://doi.org/10.1038/s41558-019-0662-y (2020).
Google Scholar
Latonin, M. M., Bashmachnikov, I. L., Bobylev, L. P. & Davy, R. Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming. Polar Sci. 30, 100677. https://doi.org/10.1016/j.polar.2021.100677 (2021).
Google Scholar
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19. https://doi.org/10.5194/tc-3-11-2009 (2009).
Google Scholar
Cai, Q. et al. Accelerated decline of summer Arctic Sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environ. Res. Lett. 16, 034015. https://doi.org/10.1088/1748-9326/abdb5f (2021).
Google Scholar
England, M. R., Eisenman, I., Lutsko, N. J. & Wagner, T. J. W. The recent emergence of Arctic amplification. Geophys. Res. Lett. 48(15), e2021GL094086. https://doi.org/10.1029/2021GL094086 (2021).
Google Scholar
Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P. & Miles, M. W. Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation. Tellus Ser. A Dyn. Meteorol. Oceanogr. 68, 1. https://doi.org/10.3402/tellusa.v68.28234 (2016).
Google Scholar
Walsh, K. J. E., Simmonds, I. & Collier, M. Sigma-coordinate calculation of topographically forced baroclinicity around Antarctica. Dyn. Atmos. Oceans 33, 1–29. https://doi.org/10.1016/s0377-0265(00)00054-3 (2000).
Google Scholar
Simmonds, I. & Lim, E.-P. Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett. 36, L01707. https://doi.org/10.1029/2008GL036320) (2009).
Google Scholar
Grieger, J., Leckebusch, G. C., Raible, C. C., Rudeva, I. & Simmonds, I. Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus 70A, 1454808. https://doi.org/10.1080/16000870.2018.1454808) (2018).
Google Scholar
Wang, S.-M., Xie, A.-H. & Zhu, J.-P. Does polar amplification exist in Antarctic surface during the recent four decades?. J. Mt. Sci. 18, 2626–2634. https://doi.org/10.1007/s11629-021-6912-2 (2011).
Google Scholar
Zhu, J., Xie, A., Qin, X., Xu, B. & Wang, Y. Assessment of Antarctic amplification based on a reconstruction of near-surface air temperature. Atmosphere 14, 218. https://doi.org/10.3390/atmos14020218 (2023).
Google Scholar
Xie, A., Zhu, J., Qin, X. & Wang, S. The Antarctic amplification based on MODIS land surface temperature and ERA5. Remote Sens. 15, 3540. https://doi.org/10.3390/rs15143540 (2023).
Google Scholar
Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21(10), 2283–2296. https://doi.org/10.1175/2007JCLI2100.1 (2008).
Google Scholar
Turner, J. et al. Record low Antarctic Sea Ice cover in February 2022. Geophys. Res. Lett. 49(12), e2022GL098904. https://doi.org/10.1029/2022GL098904 (2022).
Google Scholar
Yadav, J., Kumar, A. & Mohan, R. Atmospheric precursors to the Antarctic sea ice record low in February 2022. Environ. Res. Commun. 4, 121005. https://doi.org/10.1088/2515-7620/aca5f2 (2022).
Google Scholar
Purich, A. & Doddridge, E. W. Record low Antarctic Sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314. https://doi.org/10.1038/s43247-023-00961-9 (2023).
Google Scholar
Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. Cryosphere 17, 701–717. https://doi.org/10.5194/tc-17-701-2023 (2023).
Google Scholar
Overland, J., Wood, K. & Wang, M. Warm Arctic—Cold continents: Climate impact of newly open Arctic Sea. Polar Res. 30, 15787. https://doi.org/10.3042/polar.v30i0.15787 (2011).
Google Scholar
Screen, J. A. Influence of Arctic Sea ice on European summer precipitation. Environ. Res. Lett. 8, 044015. https://doi.org/10.1088/1748-9326/8/4/044015 (2013).
Google Scholar
Tang, Q., Zhang, X. & Francis, J. A. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Clim. Change 4, 45–50. https://doi.org/10.1038/nclimate20655 (2013).
Google Scholar
Pistone, K., Eisenman, I. & Ramanathan, V. Radiative heating of an ice-free Arctic Ocean. Geophys. Res. Lett. 46, 7474–7480. https://doi.org/10.1029/2019GL082914 (2019).
Google Scholar
Zhuo, W., Yao, Y., Luo, D., Simmonds, I. & Huang, F. The key atmospheric drivers linking regional Arctic amplification with East Asian cold extremes. Atmos. Res. 283, 106557. https://doi.org/10.1016/j.atmosres.2022.106557 (2023).
Google Scholar
Cerrone, D., Fusco, G., Simmonds, Y., Aulicino, G. & Budillon, G. Dominant covarying climate signals over the Southern Ocean and Antarctic sea ice influence over the last three decades. J. Clim. 30, 3055–3072 (2017).
Google Scholar
Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537(7618), 89–92 (2016).
Google Scholar
Li, M. et al. Anchoring of atmospheric teleconnection patterns by Arctic Sea ice loss and its link to winter cold anomalies in East Asia. Int. J. Climatol. 41, 547–558 (2021).
Google Scholar
García, V. Arctic amplification and policy recommendations SSRN. https://ssrn.com/abstract=3927691 (2021).
Brunetti, M., Maugeri, M. & Nanni, T. Changes in total precipitation, rainy days and extreme events in northeastern Italy. Int. J. Climatol. 21(7), 861–871. https://doi.org/10.1002/joc.660 (2001).
Google Scholar
Gil-Alana, L. A. & Sauci, L. US temperatures: Time trends and persistence. Int. J. Climatol. 39(13), 5091–5103. https://doi.org/10.1002/joc.6128 (2019).
Google Scholar
Caporale, G. M., Gil-Alana, L.A. & Sauci, L. Trends and Persistence in the Greenland Ice Sheet Mass. CESifo Working Paper No. 10556, Available at SSRN: https://doi.org/10.2139/ssrn.4514785 (2023).
Huang, H.-H., Chan, N. H., Chen, K. & Ing, C.-K. Consistent order selection for ARFIMA processes. Ann. Stat. 50(3), 1297–1319. https://doi.org/10.1214/21-AOS2149 (2022).
Google Scholar
Bloomfield, P. & Nychka, D. Climate spectra and detecting climate change. Clim. Change 21(3), 275–287 (1992).
Google Scholar
Woodward, W. A. & Gray, H. L. Global warming and the problem of testing for trend in time series data. J. Clim. 6(5), 953–962 (1993).
Google Scholar
Woodward, W. A. & Gray, H. L. Selecting a model for detecting the presence of a trend. J. Clim. 8(8), 1929–1937 (1995).
Google Scholar
Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, S. & Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 295(3–4), 441–454. https://doi.org/10.1016/S0378-4371(01)00144-3 (2001).
Google Scholar
Vogelsang, T. J. & Franses, P. H. Are winters getting warmer?. Environ. Model. Softw. 20(11), 1449–1455. https://doi.org/10.1016/j.envsoft.2004.09.016 (2005).
Google Scholar
Fatichi, S., Barbosa, S. M., Caporali, E. & Silva, M. E. Deterministic versus stochastic trends: Detection and challenges. J. Geophys. Res. 114, D18121. https://doi.org/10.1029/2009JD011960 (2009).
Google Scholar
Mandelbrot, B. & van Ness, J. W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437. https://doi.org/10.1137/1010093 (1968).
Google Scholar
Robinson, P. M. Efficient tests of nonstationary hypothesis. J. Am. Stat. Assoc. 89, 1420–1437 (1994).
Google Scholar
Lenssen, N. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124(12), 6307–6326. https://doi.org/10.1029/2018JD029522 (2019).
Google Scholar
Morice, C. et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 dataset. J. Geophys. Res. Atmos. 26(3), e2019JD032361. https://doi.org/10.1029/2019JD032361 (2021).
Google Scholar
Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impacton recent temperature trends. Quart. J. Roy. Meteorol. Soc. 140(683), 1935–1944. https://doi.org/10.1002/qj.2297 (2014).
Google Scholar
Bloomfield, P. An exponential model in the spectrum of a scalar time series. Biometrika 60, 217–226. https://doi.org/10.1093/biomet/60.2.217 (1973).
Google Scholar
Bai, J. & Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econ. 18(1), 1–22 (2003).
Google Scholar
Gil-Alana, L. A. Fractional integration and structural breaks at unknown periods of time. J. Time Ser. Anal. 22(1), 163–185 (2008).
Google Scholar
Lo, T.-T. & Hsu, H.-H. Change in the dominant decadal patterns and the late 1980s abrupt warming in the extratropical Northern Hemisphere. Atmos. Sci. Lett. 11, 210–215. https://doi.org/10.1002/asl.275 (2010).
Google Scholar
Latonin, M. M., Lobanov, V. A. & Bashmachnikov, I. L. Discontinuities in wintertime warming in Northern Europe during 1951–2016. Climate 8, 80. https://doi.org/10.3390/cli8060080 (2020).
Google Scholar
Latonin, M. M. & Demchenko, AYu. A robust stepwise jump in the Arctic wintertime warming in 2005 coherent with the increased clear-sky downward longwave radiation flux. Dyn. Atmos. Oceans 108, 101503. https://doi.org/10.1016/j.dynatmoce.2024.101503 (2024).
Google Scholar
Sato, K., Inoue, J., Simmonds, I. & Rudeva, I. Antarctic Peninsula warm winters influenced by Tasman Sea surface temperatures. Nat. Commun. 12(1), 3756 (2021).
Google Scholar
Granger, C. W. & Hyung, N. Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J. Empir. Finance 11(3), 399–421 (2004).
Google Scholar
Nikseresht, A. & Amindavar, H. Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework. Appl. Energy 353, 122069. https://doi.org/10.1016/j.apenergy.2023.122069 (2024).
Google Scholar
Paza, M. & Sibbertsen, P. Optimal forecasts in the presence of discrete structural breaks under long memory. J. Forecast. 42, 1889–1908. https://doi.org/10.1002/for.2988 (2023).
Google Scholar