Some new evidence using fractional integration about trends, breaks and persistence in polar amplification

Daily Zen Mews


  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis (Cambridge University Press, 2001).

    Google Scholar 

  • AMAP (Arctic Monitoring and Assessment Programme). Impacts of short-lived climate forcers on arctic climate, air quality, and human health. Tromsø https://www.amap.no/documents/download/6939/inline (2021).

  • Isaksen, K. et al. Exceptional warming over the Barents area. Sci. Rep. 12, 9371. https://doi.org/10.1038/s41598-022-13568-5.C (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184. https://doi.org/10.1038/ngeo20714 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yamanouchi, T. & Takata, K. Rapid change of the Arctic climate system and its global influences-overview of GRENE Arctic climate change research project (2011–2016). Polar Sci. 25, 100548. https://doi.org/10.1016/j.polar.2020.100548 (2020).

    Article 
    MATH 

    Google Scholar 

  • Walsh, J. E. Arctic climate change, variability, and extremes. In Arctic Hydrology, Permafrost and Ecosystems (eds Yang, D. & Kane, D. L.) (Springer, 2021). https://doi.org/10.1007/978-3-030-50930-9_1.

    Chapter 
    MATH 

    Google Scholar 

  • Chylek, P. et al. Annual mean Arctic amplification 1970–2020: Observed and simulated by CMIP6. Clim. Models Geophys. Res. Lett. 49, 9371. https://doi.org/10.1029/2022GL099371 (2022).

    Article 

    Google Scholar 

  • Chylek, P., Folland, C., Klett, J. D., Lesins, G. & Dubey, M. K. Arctic amplification in the community earth system models (CESM1 and CESM2). Atmosphere 14(5), 820. https://doi.org/10.3390/atmos14050820 (2023).

    Article 
    ADS 

    Google Scholar 

  • Salzmann, M. The polar amplification asymmetry: Role of Antarctic surface height. Earth Syst. Dyn. 8, 323–336. https://doi.org/10.5194/esd-8-323-2017 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919. https://doi.org/10.1038/s41467-018-04173-0 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. N. & Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Front. Earth Sci. 8, 9. https://doi.org/10.3389/feart.2021.710036 (2021).

    Article 

    Google Scholar 

  • Serreze, M. C., Holland, M. M. & Stroeveauthors, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315(5818), 1533–1536. https://doi.org/10.1126/science.1139426 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Miller, G. H. et al. Arctic amplification: Can the past constrain the future?. Quat. Sci. Rev. 29(15–16), 179–1790. https://doi.org/10.1016/j.quascirev.2010.02.008 (2010).

    Article 

    Google Scholar 

  • Cox, T., Donohoe, A., Armour, K. C., Frierson, D. M. W. & Roe, G. H. Trends in atmospheric heat transport since 1980. J. Clim. 37(5), 1539–1550. https://doi.org/10.1175/JCLI-D-23-0385.1 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Kinnard, C. et al. Reconstructed changes in Arctic Sea ice over the past 1,450 years. Nature 479, 509–512. https://doi.org/10.1038/nature10581 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • United Nations Environment Programme. Global linkages a graphic look at the changing Arctic. https://www.unep.org/resources/publication/global-linkages-graphic-look-changing-arctic (2019).

  • Lindsay, R. & Schweiger, A. Arctic Sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 9, 269–283. https://doi.org/10.5194/tc-9-269-2015 (2015).

    Article 
    ADS 

    Google Scholar 

  • Simmonds, I. & Li, M. Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity. Ann. N. Y. Acad. Sci. 1504(1), 167–186. https://doi.org/10.1111/nyas.14673 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since. Commun. Earth Environ. 3, 168. https://doi.org/10.1038/s43247-022-00498-3 (2022).

    Article 
    ADS 

    Google Scholar 

  • Cohen, J. A. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637. https://doi.org/10.1038/ngeo2234 (2014).

    Article 
    ADS 

    Google Scholar 

  • Smith, D. M. et al. The Polar amplification model intercomparison project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model. Dev. 12, 1139–1164. https://doi.org/10.5194/gmd-12-1139-2019 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gil-Alana, L. A., Gupta, R., Sauci, L. & Carmona-González, N. Temperature and precipitation in the US states: Long memory, persistence, and time trend. Theor. Appl. Climatol. 150, 1731–1744. https://doi.org/10.1007/s00704-022-04232-z (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yuan, N., Franzke, C. L. E., Xiong, F., Fu, Z. & Dong, W. The impact of long-term memory on the climate response to greenhouse gas emissions. Npj Clim. Atmos. Sci. 5, 70 (2022).

    Article 

    Google Scholar 

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3(1), 168 (2022).

    Article 
    ADS 

    Google Scholar 

  • Varotsos, C. A., Franzke, C. L. E., Efstathiou, M. N. & Degermendzhi, A. G. Evidence for two abrupt warming events of SST in the last century. Theor. Appl. Climatol. 116, 51–60. https://doi.org/10.1007/s00704-013-0935-8 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Varotsos, C. A., Efstathiou, C. M. & Christodoulakis, J. Abrupt changes in global tropospheric temperature. Atmos. Res. 217, 114–119. https://doi.org/10.1016/j.atmosres.2018.11.001 (2019).

    Article 
    MATH 

    Google Scholar 

  • Gershunov, A. & Barnett, T. P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 79(12), 2715–2725 (1998).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78(6), 1069–1079 (1997).

    Article 
    ADS 

    Google Scholar 

  • Efstathiou, M. N., Tzanis, C., Cracknell, A. P. & Varotsos, C. A. New features of land and sea surface temperature anomalies. Int. J. Remote Sens. 32(11), 3231–3238. https://doi.org/10.1080/01431161.2010.541504 (2011).

    Article 

    Google Scholar 

  • Kuzmina, S., Johannessen, O. M., Bengtsson, L., Aniskina, O. & Bobylev, L. High northern latitude surface air temperature: Comparison of existing data and creation of a new gridded data set 1900–2000. Tellus A 60, 289–304 (2008).

    Article 
    ADS 

    Google Scholar 

  • Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim. 23, 3888–3906. https://doi.org/10.1175/2010JCLI3297.1 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Blackport, R. & Screen, J. A. Weakened evidence for mid-latitude impacts of Arctic warming. Nat. Clim. Change 10(12), 1065–1066. https://doi.org/10.1038/s41558-020-00954-y (2020).

    Article 
    ADS 

    Google Scholar 

  • Xue, D., Lu, J., Sun, L., Chen, G. & Zhang, Y. Local increase of anticyclonic wave activity over northern Eurasia under amplified Arctic warming. Geofísical. Res. Lett. 44, 3299–3308. https://doi.org/10.1002/2017GL072649 (2017).

    Article 
    ADS 

    Google Scholar 

  • Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29. https://doi.org/10.1038/s41558-019-0662-y (2020).

    Article 
    ADS 

    Google Scholar 

  • Latonin, M. M., Bashmachnikov, I. L., Bobylev, L. P. & Davy, R. Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming. Polar Sci. 30, 100677. https://doi.org/10.1016/j.polar.2021.100677 (2021).

    Article 

    Google Scholar 

  • Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19. https://doi.org/10.5194/tc-3-11-2009 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Cai, Q. et al. Accelerated decline of summer Arctic Sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environ. Res. Lett. 16, 034015. https://doi.org/10.1088/1748-9326/abdb5f (2021).

    Article 
    ADS 

    Google Scholar 

  • England, M. R., Eisenman, I., Lutsko, N. J. & Wagner, T. J. W. The recent emergence of Arctic amplification. Geophys. Res. Lett. 48(15), e2021GL094086. https://doi.org/10.1029/2021GL094086 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Johannessen, O. M., Kuzmina, S. I., Bobylev, L. P. & Miles, M. W. Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation. Tellus Ser. A Dyn. Meteorol. Oceanogr. 68, 1. https://doi.org/10.3402/tellusa.v68.28234 (2016).

    Article 

    Google Scholar 

  • Walsh, K. J. E., Simmonds, I. & Collier, M. Sigma-coordinate calculation of topographically forced baroclinicity around Antarctica. Dyn. Atmos. Oceans 33, 1–29. https://doi.org/10.1016/s0377-0265(00)00054-3 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Simmonds, I. & Lim, E.-P. Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett. 36, L01707. https://doi.org/10.1029/2008GL036320) (2009).

    Article 
    ADS 

    Google Scholar 

  • Grieger, J., Leckebusch, G. C., Raible, C. C., Rudeva, I. & Simmonds, I. Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus 70A, 1454808. https://doi.org/10.1080/16000870.2018.1454808) (2018).

    Article 
    ADS 

    Google Scholar 

  • Wang, S.-M., Xie, A.-H. & Zhu, J.-P. Does polar amplification exist in Antarctic surface during the recent four decades?. J. Mt. Sci. 18, 2626–2634. https://doi.org/10.1007/s11629-021-6912-2 (2011).

    Article 
    MATH 

    Google Scholar 

  • Zhu, J., Xie, A., Qin, X., Xu, B. & Wang, Y. Assessment of Antarctic amplification based on a reconstruction of near-surface air temperature. Atmosphere 14, 218. https://doi.org/10.3390/atmos14020218 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Xie, A., Zhu, J., Qin, X. & Wang, S. The Antarctic amplification based on MODIS land surface temperature and ERA5. Remote Sens. 15, 3540. https://doi.org/10.3390/rs15143540 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21(10), 2283–2296. https://doi.org/10.1175/2007JCLI2100.1 (2008).

    Article 
    ADS 

    Google Scholar 

  • Turner, J. et al. Record low Antarctic Sea Ice cover in February 2022. Geophys. Res. Lett. 49(12), e2022GL098904. https://doi.org/10.1029/2022GL098904 (2022).

    Article 
    ADS 

    Google Scholar 

  • Yadav, J., Kumar, A. & Mohan, R. Atmospheric precursors to the Antarctic sea ice record low in February 2022. Environ. Res. Commun. 4, 121005. https://doi.org/10.1088/2515-7620/aca5f2 (2022).

    Article 
    MATH 

    Google Scholar 

  • Purich, A. & Doddridge, E. W. Record low Antarctic Sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314. https://doi.org/10.1038/s43247-023-00961-9 (2023).

    Article 
    ADS 

    Google Scholar 

  • Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode. Cryosphere 17, 701–717. https://doi.org/10.5194/tc-17-701-2023 (2023).

    Article 
    ADS 

    Google Scholar 

  • Overland, J., Wood, K. & Wang, M. Warm Arctic—Cold continents: Climate impact of newly open Arctic Sea. Polar Res. 30, 15787. https://doi.org/10.3042/polar.v30i0.15787 (2011).

    Article 
    MATH 

    Google Scholar 

  • Screen, J. A. Influence of Arctic Sea ice on European summer precipitation. Environ. Res. Lett. 8, 044015. https://doi.org/10.1088/1748-9326/8/4/044015 (2013).

    Article 
    ADS 

    Google Scholar 

  • Tang, Q., Zhang, X. & Francis, J. A. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Clim. Change 4, 45–50. https://doi.org/10.1038/nclimate20655 (2013).

    Article 
    ADS 

    Google Scholar 

  • Pistone, K., Eisenman, I. & Ramanathan, V. Radiative heating of an ice-free Arctic Ocean. Geophys. Res. Lett. 46, 7474–7480. https://doi.org/10.1029/2019GL082914 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zhuo, W., Yao, Y., Luo, D., Simmonds, I. & Huang, F. The key atmospheric drivers linking regional Arctic amplification with East Asian cold extremes. Atmos. Res. 283, 106557. https://doi.org/10.1016/j.atmosres.2022.106557 (2023).

    Article 

    Google Scholar 

  • Cerrone, D., Fusco, G., Simmonds, Y., Aulicino, G. & Budillon, G. Dominant covarying climate signals over the Southern Ocean and Antarctic sea ice influence over the last three decades. J. Clim. 30, 3055–3072 (2017).

    Article 
    ADS 

    Google Scholar 

  • Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537(7618), 89–92 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Li, M. et al. Anchoring of atmospheric teleconnection patterns by Arctic Sea ice loss and its link to winter cold anomalies in East Asia. Int. J. Climatol. 41, 547–558 (2021).

    Article 

    Google Scholar 

  • García, V. Arctic amplification and policy recommendations SSRN. https://ssrn.com/abstract=3927691 (2021).

  • Brunetti, M., Maugeri, M. & Nanni, T. Changes in total precipitation, rainy days and extreme events in northeastern Italy. Int. J. Climatol. 21(7), 861–871. https://doi.org/10.1002/joc.660 (2001).

    Article 
    MATH 

    Google Scholar 

  • Gil-Alana, L. A. & Sauci, L. US temperatures: Time trends and persistence. Int. J. Climatol. 39(13), 5091–5103. https://doi.org/10.1002/joc.6128 (2019).

    Article 
    MATH 

    Google Scholar 

  • Caporale, G. M., Gil-Alana, L.A. & Sauci, L. Trends and Persistence in the Greenland Ice Sheet Mass. CESifo Working Paper No. 10556, Available at SSRN: https://doi.org/10.2139/ssrn.4514785 (2023).

  • Huang, H.-H., Chan, N. H., Chen, K. & Ing, C.-K. Consistent order selection for ARFIMA processes. Ann. Stat. 50(3), 1297–1319. https://doi.org/10.1214/21-AOS2149 (2022).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Bloomfield, P. & Nychka, D. Climate spectra and detecting climate change. Clim. Change 21(3), 275–287 (1992).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Woodward, W. A. & Gray, H. L. Global warming and the problem of testing for trend in time series data. J. Clim. 6(5), 953–962 (1993).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Woodward, W. A. & Gray, H. L. Selecting a model for detecting the presence of a trend. J. Clim. 8(8), 1929–1937 (1995).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, S. & Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 295(3–4), 441–454. https://doi.org/10.1016/S0378-4371(01)00144-3 (2001).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Vogelsang, T. J. & Franses, P. H. Are winters getting warmer?. Environ. Model. Softw. 20(11), 1449–1455. https://doi.org/10.1016/j.envsoft.2004.09.016 (2005).

    Article 
    MATH 

    Google Scholar 

  • Fatichi, S., Barbosa, S. M., Caporali, E. & Silva, M. E. Deterministic versus stochastic trends: Detection and challenges. J. Geophys. Res. 114, D18121. https://doi.org/10.1029/2009JD011960 (2009).

    Article 
    ADS 

    Google Scholar 

  • Mandelbrot, B. & van Ness, J. W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437. https://doi.org/10.1137/1010093 (1968).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Robinson, P. M. Efficient tests of nonstationary hypothesis. J. Am. Stat. Assoc. 89, 1420–1437 (1994).

    Article 
    MATH 

    Google Scholar 

  • Lenssen, N. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124(12), 6307–6326. https://doi.org/10.1029/2018JD029522 (2019).

    Article 
    ADS 

    Google Scholar 

  • Morice, C. et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 dataset. J. Geophys. Res. Atmos. 26(3), e2019JD032361. https://doi.org/10.1029/2019JD032361 (2021).

    Article 
    ADS 

    Google Scholar 

  • Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impacton recent temperature trends. Quart. J. Roy. Meteorol. Soc. 140(683), 1935–1944. https://doi.org/10.1002/qj.2297 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Bloomfield, P. An exponential model in the spectrum of a scalar time series. Biometrika 60, 217–226. https://doi.org/10.1093/biomet/60.2.217 (1973).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Bai, J. & Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econ. 18(1), 1–22 (2003).

    Article 
    MATH 

    Google Scholar 

  • Gil-Alana, L. A. Fractional integration and structural breaks at unknown periods of time. J. Time Ser. Anal. 22(1), 163–185 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Lo, T.-T. & Hsu, H.-H. Change in the dominant decadal patterns and the late 1980s abrupt warming in the extratropical Northern Hemisphere. Atmos. Sci. Lett. 11, 210–215. https://doi.org/10.1002/asl.275 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Latonin, M. M., Lobanov, V. A. & Bashmachnikov, I. L. Discontinuities in wintertime warming in Northern Europe during 1951–2016. Climate 8, 80. https://doi.org/10.3390/cli8060080 (2020).

    Article 

    Google Scholar 

  • Latonin, M. M. & Demchenko, AYu. A robust stepwise jump in the Arctic wintertime warming in 2005 coherent with the increased clear-sky downward longwave radiation flux. Dyn. Atmos. Oceans 108, 101503. https://doi.org/10.1016/j.dynatmoce.2024.101503 (2024).

    Article 
    MATH 

    Google Scholar 

  • Sato, K., Inoue, J., Simmonds, I. & Rudeva, I. Antarctic Peninsula warm winters influenced by Tasman Sea surface temperatures. Nat. Commun. 12(1), 3756 (2021).

    Article 

    Google Scholar 

  • Granger, C. W. & Hyung, N. Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J. Empir. Finance 11(3), 399–421 (2004).

    Article 
    MATH 

    Google Scholar 

  • Nikseresht, A. & Amindavar, H. Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework. Appl. Energy 353, 122069. https://doi.org/10.1016/j.apenergy.2023.122069 (2024).

    Article 
    MATH 

    Google Scholar 

  • Paza, M. & Sibbertsen, P. Optimal forecasts in the presence of discrete structural breaks under long memory. J. Forecast. 42, 1889–1908. https://doi.org/10.1002/for.2988 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 




  • Source link

    Leave a Comment