Fingerprinting the recovery of Antarctic ozone

Daily Zen Mews


  • Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985).

    Article 
    CAS 

    Google Scholar 

  • Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Laube, J. C. & Tegtmeier, S. in Scientific Assessment of Ozone Depletion: 2022 Ch. 1 51–114 (World Meteorological Organization, 2022).

  • Chipperfield, M. P. & Santee, M. L. in Scientific Assessment of Ozone Depletion: 2022 Ch. 4 215–270 (World Meteorological Organization, 2022).

  • Santer, B. D. et al. Exceptional stratospheric contribution to human fingerprints on atmospheric temperature. Proc. Natl Acad. Sci. 120, e2300758120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Terray, L. et al. Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Clim. 25, 958–977 (2012).

    Article 
    MATH 

    Google Scholar 

  • Stott, P. A., Sutton, R. T. & Smith, D. M. Detection and attribution of Atlantic salinity changes. Geophys. Res. Lett. 35, L21702 (2008).

    Article 

    Google Scholar 

  • Gillett, N. P., Fyfe, J. C. & Parker, D. E. Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett. 40, 2302–2306 (2013).

    Article 
    CAS 

    Google Scholar 

  • Christidis, N. & Stott, P. A. Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett. 42, 10,798–10,806 (2015).

    Article 
    MATH 

    Google Scholar 

  • Shi, J.-R., Santer, B. D., Kwon, Y.-O. & Wijffels, S. E. The emerging human influence on the seasonal cycle of sea surface temperature. Nat. Clim. Change 14, 364–372 (2024).

    Article 
    MATH 

    Google Scholar 

  • Santer, B. D. et al. Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature. J. Clim. 35, 6075–6100 (2022).

    Article 
    MATH 

    Google Scholar 

  • Hasselmann, K. Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6, 1957–1971 (1993).

    Article 
    MATH 

    Google Scholar 

  • Santee, M. L. et al. Prolonged and pervasive perturbations in the composition of the Southern Hemisphere midlatitude lower stratosphere from the Australian New Year’s fires. Geophys. Res. Lett. 49, e2021GL096270 (2022).

    Article 
    MATH 

    Google Scholar 

  • Bernath, P., Boone, C. & Crouse, J. Wildfire smoke destroys stratospheric ozone. Science 375, 1292–1295 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Solomon, S. et al. Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature 615, 259–264 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, X. et al. Stratospheric climate anomalies and ozone loss caused by the Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Atmos. 128, e2023JD039480 (2023).

    Article 

    Google Scholar 

  • Zhang, J. et al. Chemistry contribution to stratospheric ozone depletion after the unprecedented water-rich Hunga Tonga eruption. Geophys. Res. Lett. 51, e2023GL105762 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wohltmann, I., Santee, M. L., Manney, G. L. & Millán, L. F. The chemical effect of increased water vapor from the Hunga Tonga-Hunga Ha’apai eruption on the Antarctic ozone hole. Geophys. Res. Lett. 51, e2023GL106980 (2024).

    Article 

    Google Scholar 

  • Manney, G. L. et al. Siege in the southern stratosphere: Hunga Tonga-Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophys. Res. Lett. 50, e2023GL103855 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kessenich, H. E., Seppälä, A. & Rodger, C. J. Potential drivers of the recent large Antarctic ozone holes. Nat. Commun. 14, 7259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hassler, B. & Young, P. J. in Scientific Assessment of Ozone Depletion: 2022 Ch. 3 153–214 (World Meteorological Organization, 2022).

  • Santer, B. D. et al. Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res. Atmos. 106, 28033–28059 (2001).

    Article 
    MATH 

    Google Scholar 

  • Dhomse, S. S. et al. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys. 18, 8409–8438 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zeng, G. et al. Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models. J. Geophys. Res. Atmos. 127, e2022JD036452 (2022).

    Article 
    CAS 

    Google Scholar 

  • Robertson, F. et al. Signal-to-noise calculations of emergence and de-emergence of stratospheric ozone depletion. Geophys. Res. Lett. 50, e2023GL104246 (2023).

    Article 

    Google Scholar 

  • Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article 
    MATH 

    Google Scholar 

  • Waters, J. W. et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 44, 1075–1092 (2006).

    Article 
    MATH 

    Google Scholar 

  • Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

    Article 
    MATH 

    Google Scholar 

  • Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–7391 (2013).

    Article 
    MATH 

    Google Scholar 

  • Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á. & Murphy, D. J. Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: motivation and results. J. Atmos. Sci. 74, 275–291 (2017).

    Article 

    Google Scholar 

  • Wargan, K., Weir, B., Manney, G. L., Cohn, S. E. & Livesey, N. J. The anomalous 2019 Antarctic ozone hole in the GEOS Constituent Data Assimilation System with MLS observations. J. Geophys. Res. Atmos. 125, e2020JD033335 (2020).

    Article 
    CAS 

    Google Scholar 

  • Solomon, S. et al. Emergence of healing in the Antarctic ozone layer. Science 353, 269–274 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Haigh, J. D. & Pyle, J. A. Ozone perturbation experiments in a two-dimensional circulation model. Q. J. R. Meteorol. Soc. 108, 551–574 (1982).

    CAS 
    MATH 

    Google Scholar 

  • Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974).

    Article 
    CAS 

    Google Scholar 

  • Solomon, S., Portmann, R. W., Sasaki, T. & Hofman, D. J. Four decades of ozonesonde measurements over Antarctica. J. Geophys. Res. Atmos. 110, D21311 (2005).

    Article 

    Google Scholar 

  • Levelt, P. F. et al. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, 1093–1101 (2006).

    Article 
    MATH 

    Google Scholar 

  • Schoeberl, M. R. & Hartmann, D. L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251, 46–52 (1991).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhou, X. et al. Antarctic vortex dehydration in 2023 as a substantial removal pathway for Hunga Tonga-Hunga Ha’apai water vapor. Geophys. Res. Lett. 51, e2023GL107630 (2024).

    Article 

    Google Scholar 

  • Eric Klobas, J., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G. & Salawitch, R. J. Ozone depletion following future volcanic eruptions. Geophys. Res. Lett. 44, 7490–7499 (2017).

    Article 
    CAS 

    Google Scholar 

  • Chim, M. M. et al. Climate projections very likely underestimate future volcanic forcing and its climatic effects. Geophys. Res. Lett. 50, e2023GL103743 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Revell, L. E., Bodeker, G. E., Huck, P. E., Williamson, B. E. & Rozanov, E. The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4. Atmos. Chem. Phys. 12, 11309–11317 (2012).

    Article 
    CAS 

    Google Scholar 

  • Stone, K. A., Solomon, S. & Kinnison, D. E. On the identification of ozone recovery. Geophys. Res. Lett. 45, 5158–5165 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Chipperfield, M. P. & Bekki, S. Opinion: Stratospheric ozone – depletion, recovery and new challenges. Atmos. Chem. Phys. 24, 2783–2802 (2024).

    Article 
    MATH 

    Google Scholar 

  • Hubert, D. et al. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech. 9, 2497–2534 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Froidevaux, L. et al. Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J. Geophys. Res. Atmos. 113, D15S20 (2008).

    MATH 

    Google Scholar 

  • World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2010 (World Meteorological Organization, 2011).

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Stone, K. A., Solomon, S., Thompson, D. W. J., Kinnison, D. E. & Fyfe, J. C. On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation. J. Clim. 35, 1963–1981 (2022).

    Article 

    Google Scholar 

  • Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article 
    MATH 

    Google Scholar 

  • Solomon, A. et al. Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction. Bull. Am. Meteorol. Soc. 92, 141–156 (2011).

    Article 
    MATH 

    Google Scholar 

  • Manney, G. L. et al. Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. Atmos. 112, D24S50 (2007).

    Article 

    Google Scholar 

  • Millán, L. F. et al. Multi-parameter dynamical diagnostics for upper tropospheric and lower stratospheric studies. Atmos. Meas. Tech. 16, 2957–2988 (2023).

    Article 
    MATH 

    Google Scholar 

  • Manney, G. L. et al. Jet characterization in the upper troposphere/lower stratosphere (UTLS): applications to climatology and transport studies. Atmos. Chem. Phys. 11, 6115–6137 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lawrence, Z. D., Manney, G. L. & Wargan, K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 18, 13547–13579 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Data and code for “Fingerprinting the Recovery of Antarctic Ozone”. Zenodo https://doi.org/10.5281/zenodo.14497873 (2024).




  • Source link

    Leave a Comment