Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985).
Google Scholar
Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).
Google Scholar
Laube, J. C. & Tegtmeier, S. in Scientific Assessment of Ozone Depletion: 2022 Ch. 1 51–114 (World Meteorological Organization, 2022).
Chipperfield, M. P. & Santee, M. L. in Scientific Assessment of Ozone Depletion: 2022 Ch. 4 215–270 (World Meteorological Organization, 2022).
Santer, B. D. et al. Exceptional stratospheric contribution to human fingerprints on atmospheric temperature. Proc. Natl Acad. Sci. 120, e2300758120 (2023).
Google Scholar
Terray, L. et al. Near-surface salinity as nature’s rain gauge to detect human influence on the tropical water cycle. J. Clim. 25, 958–977 (2012).
Google Scholar
Stott, P. A., Sutton, R. T. & Smith, D. M. Detection and attribution of Atlantic salinity changes. Geophys. Res. Lett. 35, L21702 (2008).
Google Scholar
Gillett, N. P., Fyfe, J. C. & Parker, D. E. Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophys. Res. Lett. 40, 2302–2306 (2013).
Google Scholar
Christidis, N. & Stott, P. A. Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett. 42, 10,798–10,806 (2015).
Google Scholar
Shi, J.-R., Santer, B. D., Kwon, Y.-O. & Wijffels, S. E. The emerging human influence on the seasonal cycle of sea surface temperature. Nat. Clim. Change 14, 364–372 (2024).
Google Scholar
Santer, B. D. et al. Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature. J. Clim. 35, 6075–6100 (2022).
Google Scholar
Hasselmann, K. Optimal fingerprints for the detection of time-dependent climate change. J. Clim. 6, 1957–1971 (1993).
Google Scholar
Santee, M. L. et al. Prolonged and pervasive perturbations in the composition of the Southern Hemisphere midlatitude lower stratosphere from the Australian New Year’s fires. Geophys. Res. Lett. 49, e2021GL096270 (2022).
Google Scholar
Bernath, P., Boone, C. & Crouse, J. Wildfire smoke destroys stratospheric ozone. Science 375, 1292–1295 (2022).
Google Scholar
Solomon, S. et al. Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature 615, 259–264 (2023).
Google Scholar
Wang, X. et al. Stratospheric climate anomalies and ozone loss caused by the Hunga Tonga-Hunga Ha’apai volcanic eruption. J. Geophys. Res. Atmos. 128, e2023JD039480 (2023).
Google Scholar
Zhang, J. et al. Chemistry contribution to stratospheric ozone depletion after the unprecedented water-rich Hunga Tonga eruption. Geophys. Res. Lett. 51, e2023GL105762 (2024).
Google Scholar
Wohltmann, I., Santee, M. L., Manney, G. L. & Millán, L. F. The chemical effect of increased water vapor from the Hunga Tonga-Hunga Ha’apai eruption on the Antarctic ozone hole. Geophys. Res. Lett. 51, e2023GL106980 (2024).
Google Scholar
Manney, G. L. et al. Siege in the southern stratosphere: Hunga Tonga-Hunga Ha’apai water vapor excluded from the 2022 Antarctic polar vortex. Geophys. Res. Lett. 50, e2023GL103855 (2023).
Google Scholar
Kessenich, H. E., Seppälä, A. & Rodger, C. J. Potential drivers of the recent large Antarctic ozone holes. Nat. Commun. 14, 7259 (2023).
Google Scholar
Hassler, B. & Young, P. J. in Scientific Assessment of Ozone Depletion: 2022 Ch. 3 153–214 (World Meteorological Organization, 2022).
Santer, B. D. et al. Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. J. Geophys. Res. Atmos. 106, 28033–28059 (2001).
Google Scholar
Dhomse, S. S. et al. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations. Atmos. Chem. Phys. 18, 8409–8438 (2018).
Google Scholar
Zeng, G. et al. Attribution of stratospheric and tropospheric ozone changes between 1850 and 2014 in CMIP6 models. J. Geophys. Res. Atmos. 127, e2022JD036452 (2022).
Google Scholar
Robertson, F. et al. Signal-to-noise calculations of emergence and de-emergence of stratospheric ozone depletion. Geophys. Res. Lett. 50, e2023GL104246 (2023).
Google Scholar
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).
Google Scholar
Waters, J. W. et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 44, 1075–1092 (2006).
Google Scholar
Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).
Google Scholar
Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Clim. 26, 7372–7391 (2013).
Google Scholar
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, Á. & Murphy, D. J. Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: motivation and results. J. Atmos. Sci. 74, 275–291 (2017).
Google Scholar
Wargan, K., Weir, B., Manney, G. L., Cohn, S. E. & Livesey, N. J. The anomalous 2019 Antarctic ozone hole in the GEOS Constituent Data Assimilation System with MLS observations. J. Geophys. Res. Atmos. 125, e2020JD033335 (2020).
Google Scholar
Solomon, S. et al. Emergence of healing in the Antarctic ozone layer. Science 353, 269–274 (2016).
Google Scholar
Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).
Google Scholar
Haigh, J. D. & Pyle, J. A. Ozone perturbation experiments in a two-dimensional circulation model. Q. J. R. Meteorol. Soc. 108, 551–574 (1982).
Google Scholar
Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974).
Google Scholar
Solomon, S., Portmann, R. W., Sasaki, T. & Hofman, D. J. Four decades of ozonesonde measurements over Antarctica. J. Geophys. Res. Atmos. 110, D21311 (2005).
Google Scholar
Levelt, P. F. et al. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, 1093–1101 (2006).
Google Scholar
Schoeberl, M. R. & Hartmann, D. L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251, 46–52 (1991).
Google Scholar
Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).
Google Scholar
Zhou, X. et al. Antarctic vortex dehydration in 2023 as a substantial removal pathway for Hunga Tonga-Hunga Ha’apai water vapor. Geophys. Res. Lett. 51, e2023GL107630 (2024).
Google Scholar
Eric Klobas, J., Wilmouth, D. M., Weisenstein, D. K., Anderson, J. G. & Salawitch, R. J. Ozone depletion following future volcanic eruptions. Geophys. Res. Lett. 44, 7490–7499 (2017).
Google Scholar
Chim, M. M. et al. Climate projections very likely underestimate future volcanic forcing and its climatic effects. Geophys. Res. Lett. 50, e2023GL103743 (2023).
Google Scholar
Revell, L. E., Bodeker, G. E., Huck, P. E., Williamson, B. E. & Rozanov, E. The sensitivity of stratospheric ozone changes through the 21st century to N2O and CH4. Atmos. Chem. Phys. 12, 11309–11317 (2012).
Google Scholar
Stone, K. A., Solomon, S. & Kinnison, D. E. On the identification of ozone recovery. Geophys. Res. Lett. 45, 5158–5165 (2018).
Google Scholar
Chipperfield, M. P. & Bekki, S. Opinion: Stratospheric ozone – depletion, recovery and new challenges. Atmos. Chem. Phys. 24, 2783–2802 (2024).
Google Scholar
Hubert, D. et al. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech. 9, 2497–2534 (2016).
Google Scholar
Froidevaux, L. et al. Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J. Geophys. Res. Atmos. 113, D15S20 (2008).
Google Scholar
World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2010 (World Meteorological Organization, 2011).
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).
Google Scholar
Stone, K. A., Solomon, S., Thompson, D. W. J., Kinnison, D. E. & Fyfe, J. C. On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation. J. Clim. 35, 1963–1981 (2022).
Google Scholar
Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
Google Scholar
Solomon, A. et al. Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction. Bull. Am. Meteorol. Soc. 92, 141–156 (2011).
Google Scholar
Manney, G. L. et al. Solar occultation satellite data and derived meteorological products: sampling issues and comparisons with Aura Microwave Limb Sounder. J. Geophys. Res. Atmos. 112, D24S50 (2007).
Google Scholar
Millán, L. F. et al. Multi-parameter dynamical diagnostics for upper tropospheric and lower stratospheric studies. Atmos. Meas. Tech. 16, 2957–2988 (2023).
Google Scholar
Manney, G. L. et al. Jet characterization in the upper troposphere/lower stratosphere (UTLS): applications to climatology and transport studies. Atmos. Chem. Phys. 11, 6115–6137 (2011).
Google Scholar
Lawrence, Z. D., Manney, G. L. & Wargan, K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 18, 13547–13579 (2018).
Google Scholar
Wang, P. et al. Data and code for “Fingerprinting the Recovery of Antarctic Ozone”. Zenodo https://doi.org/10.5281/zenodo.14497873 (2024).