Scale-dependent cloud enhancement from land restoration in West African drylands

Daily Zen Mews


  • Closset, M., Feindouno, S., Guillaumont, P. & Simonet, C. A Physical Vulnerability to Climate Change Index: which are the most vulnerable developing countries? FERDI Working paper P213 (2018).

  • UNCCD. The Great Green Wall Implementation Status and Way Ahead to 2030. (UNCCD Publication, 2020).

  • Holl, K. Primer of Ecological Restoration (Island Press, 2020).

  • UNCCD. Global Land Outlook: Second edition (2022).

  • Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024).

    Article 
    CAS 

    Google Scholar 

  • Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Chang. 11, 867–871 (2021).

    Article 
    CAS 

    Google Scholar 

  • Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    Article 
    CAS 

    Google Scholar 

  • Soares, P. M., Careto, J. A., Cardoso, R. M., Goergen, K. & Trigo, R. M. Land-atmosphere coupling regimes in a future climate in Africa: from model evaluation to projections based on CORDEX-Africa. J. Geophys. Res. Atmos. 124, 11118–11142 (2019).

    Article 

    Google Scholar 

  • Ellison, D. & Speranza, C. I. From blue to green water and back again: Promoting tree, forest and vegetation-based landscape resilience in the Sahel. Sci. Total Environ. 140002 https://doi.org/10.1016/j.scitotenv.2020.140002 (2020).

  • Villani, L., Castelli, G., Sambalino, F., Almeida Oliveira, L. A. & Bresci, E. Influence of trees on landscape temperature in semi-arid agro-ecosystems of East Africa. Biosyst. Eng. 212, 185–199 (2021).

    Article 
    CAS 

    Google Scholar 

  • Villani, L., Castelli, G., Sambalino, F., Oliveira, L. A. A. & Bresci, E. Integrating UAV and satellite data to assess the effects of agroforestry on microclimate in Dodoma region, Tanzania. In: Proc. IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). 338–342. https://doi.org/10.1109/MetroAgriFor50201.2020.9277643 (2020).

  • Syktus, J. I. & McAlpine, C. A. More than carbon sequestration: biophysical climate benefits of restored savanna woodlands. Sci. Rep. 6, 1–11 (2016).

    Article 

    Google Scholar 

  • Castelli, G., Castelli, F. & Bresci, E. Mesoclimate regulation induced by landscape restoration and water harvesting in agroecosystems of the horn of Africa. Agric. Ecosyst. Environ. 275, 54–64 (2019).

    Article 

    Google Scholar 

  • Constenla-Villoslada, S., Liu, Y., Wen, J., Sun, Y. & Chonabayashi, S. Large-scale land restoration improved drought resilience in Ethiopia’s degraded watersheds. Nat. Sustain. 5, 1–10 (2022).

    Article 

    Google Scholar 

  • Wolff, N. H., Masuda, Y. J., Meijaard, E., Wells, J. A. & Game, E. T. Impacts of tropical deforestation on local temperature and human well-being perceptions. Glob. Environ. Chang. 52, 181–189 (2018).

    Article 

    Google Scholar 

  • Saley, I. A. et al. The possible role of the Sahel Greenbelt on the occurrence of climate extremes over the West African Sahel. Atmos. Sci. Lett. 20, e927 (2019).

    Article 

    Google Scholar 

  • Holl, K. D. & Brancalion, P. H. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    Article 
    CAS 

    Google Scholar 

  • Parr, C. L., te Beest, M. & Stevens, N. Conflation of reforestation with restoration is widespread. Science 383, 698–701 (2024).

    Article 
    CAS 

    Google Scholar 

  • Martin, M. P. et al. People plant trees for utility more often than for biodiversity or carbon. Biol. Conserv. 261, 109224 (2021).

    Article 

    Google Scholar 

  • Ellison, D., Pokorný, J. & Wild, M. Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Glob. Chang. Biol. 30, e17195 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ilstedt, U. et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 6, 21930 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ellison, D. et al. Trees, forests and water: cool insights for a hot world. Glob. Environ. Chang. 43, 51–61 (2017).

    Article 

    Google Scholar 

  • Xu, R. et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 13, 670 (2022).

    Article 
    CAS 

    Google Scholar 

  • Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8, 14065 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tian, J., Zhang, Y., Klein, S. A., Öktem, R. & Wang, L. How does land cover and its heterogeneity length scales affect the formation of summertime shallow cumulus clouds in observations from the US Southern Great Plains? Geophys. Res. Lett. 49 https://doi.org/10.1029/2021GL097070 (2022).

  • Wang, J. et al. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. 106, 3670–3674 (2009).

    Article 
    CAS 

    Google Scholar 

  • Spracklen, D., Baker, J., Garcia-Carreras, L. & Marsham, J. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).

    Article 

    Google Scholar 

  • Negri, A. J., Adler, R. F., Xu, L. & Surratt, J. The impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).

    Article 

    Google Scholar 

  • Knox, R., Bisht, G., Wang, J. & Bras, R. Precipitation variability over the forest-to-nonforest transition in Southwestern Amazonia. J. Clim. 24, 2368–2377 (2011).

    Article 

    Google Scholar 

  • Taylor, C. M. et al. “Late-stage” deforestation enhances storm trends in coastal West Africa. Proc. Natl. Acad. Sci. 119, e2109285119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Taylor, C. M., de Jeu, R. A., Guichard, F., Harris, P. P. & Dorigo, W. A. Afternoon rain more likely over drier soils. Nature 489, 423–426 (2012).

    Article 
    CAS 

    Google Scholar 

  • Taylor, C. M. et al. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci. 4, 430–433 (2011).

    Article 
    CAS 

    Google Scholar 

  • te Wierik, S. A., Cammeraat, E. L., Gupta, J. & Artzy-Randrup, Y. A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 57, e2020WR029234 (2021).

    Article 

    Google Scholar 

  • Crook, J. et al. Effects on early monsoon rainfall in West Africa due to recent deforestation in a convection-permitting ensemble. Weather Clim. Dyn. 4, 229–248 (2023).

    Article 

    Google Scholar 

  • Semeena, V. S., Klein, C., Taylor, C. M. & Webster, S. Impact of land surface processes on convection over West Africa in convection-permitting ensemble forecasts: a case study using the MOGREPS ensemble. Atmos. Sci. Lett. 24 https://doi.org/10.1002/asl.1167 (2023).

  • Duveiller, G. et al. Revealing the widespread potential of forests to increase low-level cloud cover. Nat. Commun. 12, 4337 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schmetz, J. et al. An introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 83, 977–992 (2002).

    Article 

    Google Scholar 

  • Bley, S. & Deneke, H. A threshold-based cloud mask for the high-resolution visible channel of Meteosat Second Generation SEVIRI. Atmos. Meas. Technol. 6, 2713–2723 (2013).

    Article 

    Google Scholar 

  • IUCN, U.-W. a. Protected Planet: The World Database on Protected Areas (WDPA) [On-line]. (UNEP-WCMC and IUCN, 2024).

  • Taylor, C. M. Detecting soil moisture impacts on convective initiation in Europe. Geophys. Res. Lett. 42, 4631–4638 (2015).

    Article 

    Google Scholar 

  • Winker, D. M., Pelon, J. R. & McCormick, M. P. CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Lidar Remote Sensing for Industry and Environment Monitoring III. 1–11 https://doi.org/10.1117/12.466539 (SPIE, 2003).

  • Vaughan, M. A., Winker, D. M. & Powell, K. A. CALIOP Algorithm Theoretical Basis Document, Part 2, Feature Detection and Layer Properties Algorithms. (NASA Langley Research Centre, 2005).

  • Winker, D. M. et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

    Article 

    Google Scholar 

  • EUMETSAT. MSG Meteorological Products Extraction Facility: Algorithm Specification Document (EUMETSAT, 2015).

  • Ruijsch, J., Teuling, A. J., Verbesselt, J. & Hutjes, R. W. A. Landscape restoration and greening in Africa. Environ. Res. Lett. 18, 064020 (2023).

    Article 

    Google Scholar 

  • Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 [Dataset]. https://doi.org/10.5067/MODIS/MOD13Q1.061 (NASA EOSDIS Land Processes Distributed Active Archive Center, 2021).

  • Schulte to Bühne, H. et al. Protection status and national socio-economic context shape land conversion in and around a key transboundary protected area complex in West Africa. Remote Sens. Ecol. Conserv. 3 https://doi.org/10.1002/rse2.47 (2017).

  • Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article 

    Google Scholar 

  • Garcia-Carreras, L., Parker, D. J., Taylor, C. M., Reeves, C. E. & Murphy, J. G. Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res. Atmos. 115 https://doi.org/10.1029/2009JD012811 (2010).

  • Aryee, J. N., Amekudzi, L. K. & Yamba, E. I. Low-level cloud development and diurnal cycle in Southern West Africa during the DACCIWA field campaign: case study of Kumasi Supersite, Ghana. J. Geophys. Res. Atmos. 126, e2020JD034028 (2021).

    Article 

    Google Scholar 

  • Schuster, R., Fink, A. H. & Knippertz, P. Formation and maintenance of nocturnal low-level stratus over the southern West African monsoon region during AMMA 2006. J. Atmos. Sci. 70, 2337–2355 (2013).

    Article 

    Google Scholar 

  • Adler, B., Kalthoff, N. & Gantner, L. Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations. Atmos. Chem. Phys. 17, 899–910 (2017).

    Article 
    CAS 

    Google Scholar 

  • Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 1–6 (2017).

    Article 

    Google Scholar 

  • Maranan, M., Fink, A. H. & Knippertz, P. Rainfall types over southern West Africa: objective identification, climatology, and synoptic environment. Q. J. R. Meteorol. Soc. 144, 1628–1648 (2018).

    Article 

    Google Scholar 

  • Sandel, B. & Svenning, J.-C. Human impacts drive a global topographic signature in tree cover. Nat. Commun. 4, 2474 (2013).

    Article 

    Google Scholar 

  • Tuinenburg, O., Hutjes, R., Jacobs, C. & Kabat, P. Diagnosis of local land–atmosphere feedbacks in India. J. Clim. 24, 251–266 (2011).

    Article 

    Google Scholar 

  • Findell, K. L. & Eltahir, E. A. Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeorol. 4, 552–569 (2003).

    Article 

    Google Scholar 

  • Taylor, C. M. et al. Nowcasting tracks of severe convective storms in West Africa from observations of land surface state. Environ. Res. Lett. 17 https://doi.org/10.1088/1748-9326/ac536d (2022).

  • Lohou, F. et al. Surface response to rain events throughout the West African monsoon. Atmos. Chem. Phys. 14, 3883–3898 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ghilain, N., Arboleda, A. & Gellens-Meulenberghs, F. Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol. Earth Syst. Sci. 15, 771–786 (2011).

    Article 

    Google Scholar 

  • Ghilain, N. et al. Improving evapotranspiration in land surface models by using biophysical parameters derived from MSG/SEVIRI satellite. Hydrol. Earth Syst. Sci. Discuss. 8 https://doi.org/10.5194/hess-16-2567-2012 (2011).

  • Bosman, P. J., van Heerwaarden, C. C. & Teuling, A. J. Sensible heating as a potential mechanism for enhanced cloud formation over temperate forest. Q. J. R. Meteorol. Soc. 145, 450–468 (2019).

    Article 

    Google Scholar 

  • Branch, O. & Wulfmeyer, V. Deliberate enhancement of rainfall using desert plantations. Proc. Natl. Acad. Sci. 116, 18841–18847 (2019).

    Article 
    CAS 

    Google Scholar 

  • Garcia-Carreras, L., Marsham, J. H. & Spracklen, D. V. Observations of increased cloud cover over irrigated agriculture in an arid environment. J. Hydrometeorol. 18, 2161–2172 (2017).

    Article 

    Google Scholar 

  • Birch, C. E., Marsham, J. H., Parker, D. J. & Taylor, C. M. The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett. 41, 4769–4776 (2014).

    Article 

    Google Scholar 

  • Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article 

    Google Scholar 

  • Lin, H., Li, Y. & Zhao, L. Partitioning of sensible and latent heat fluxes in different vegetation types and their spatiotemporal variations based on 203 FLUXNET sites. J. Geophys. Res. Atmos. 127, e2022JD037142 (2022).

    Article 

    Google Scholar 

  • Sühring, M., Maronga, B., Herbort, F. & Raasch, S. On the effect of surface heat-flux heterogeneities on the mixed-layer-top entrainment. Bound.-Layer. Meteorol. 151, 531–556 (2014).

    Article 

    Google Scholar 

  • Mathon, V., Laurent, H. & Lebel, T. Mesoscale convective system rainfall in the Sahel. J. Appl. Meteorol. 41, 1081–1092 (2002).

    Article 

    Google Scholar 

  • Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11, e0151993 (2016).

    Article 

    Google Scholar 

  • Te Wierik, S. A. et al. The contribution of transpiration to precipitation over African watersheds. Water Resour. Res. 58, e2021WR031721 (2022).

    Article 

    Google Scholar 

  • Chen, J., Dai, A., Zhang, Y. & Rasmussen, K. L. Changes in convective available potential energy and convective inhibition under global warming. J. Clim. 33, 2025–2050 (2020).

    Article 

    Google Scholar 

  • de Arellano, J. V.-G., Van Heerwaarden, C. C. & Lelieveld, J. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci. 5, 701–704 (2012).

    Article 

    Google Scholar 

  • Fitzpatrick, R. G. J. et al. What drives the intensification of mesoscale convective systems over the West African Sahel under climate change? J. Clim. 33, 3151–3172 (2020).

    Article 

    Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. (2008).




  • Source link

    Leave a Comment