Photo-assisted technologies for environmental remediation

Daily Zen Mews


  • Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lin, J. et al. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 4, 785–803 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wei, S. et al. Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering. Nat. Commun. 14, 7549 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    Article 
    CAS 

    Google Scholar 

  • He, F., Jeon, W. & Choi, W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat. Commun. 12, 2528 (2021).

    Article 
    CAS 

    Google Scholar 

  • Weon, S., He, F. & Choi, W. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environ. Sci. Nano 6, 3185–3214 (2019).

    Article 
    CAS 

    Google Scholar 

  • Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R. & Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012).

    Article 
    CAS 

    Google Scholar 

  • Zheng, L. et al. Mixed scaling patterns and mechanisms of high-pressure nanofiltration in hypersaline wastewater desalination. Water Res. 250, 121023 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yang, X., Sun, H., Li, G., An, T. & Choi, W. Fouling of TiO2 induced by natural organic matters during photocatalytic water treatment: mechanisms and regeneration strategy. Appl. Catal. B 294, 120252 (2021).

    Article 
    CAS 

    Google Scholar 

  • Le, N. T. H. et al. Freezing-enhanced non-radical oxidation of organic pollutants by peroxymonosulfate. Chem. Eng. J. 388, 124226 (2020).

    Article 
    CAS 

    Google Scholar 

  • Weng, B., Lu, K.-Q., Tang, Z., Chen, H. M. & Xu, Y.-J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 9, 1543 (2018).

    Article 

    Google Scholar 

  • Su, Y. et al. Unveiling the function of oxygen vacancy on facet-dependent CeO2 for the catalytic destruction of monochloromethane: guidance for industrial catalyst design. Environ. Sci. Technol. 58, 8086–8095 (2024).

    Article 
    CAS 

    Google Scholar 

  • Su, Y. et al. Surface-phosphorylated ceria for chlorine-tolerance catalysis. Environ. Sci. Technol. 58, 1369–1377 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yuan, X. et al. Anti-poisoning mechanisms of Sb on vanadia-based catalysts for NOx and chlorobenzene multi-pollutant control. Environ. Sci. Technol. 57, 10211–10220 (2023).

    Article 
    CAS 

    Google Scholar 

  • Su, Z. et al. Probing the actual role and activity of oxygen vacancies in toluene catalytic oxidation: evidence from in situ XPS/NEXAFS and DFT + U calculation. ACS Catal. 13, 3444–3455 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, B., Song, Z. & Sun, L. A review: comparison of multi-air-pollutant removal by advanced oxidation processes — industrial implementation for catalytic oxidation processes. Chem. Eng. J. 409, 128136 (2021).

    Article 
    CAS 

    Google Scholar 

  • Adeleye, A. S. et al. Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem. Eng. J. 286, 640–662 (2016).

    Article 
    CAS 

    Google Scholar 

  • Brillas, E. Solar photoelectro-Fenton: a very effective and cost-efficient electrochemical advanced oxidation process for the removal of organic pollutants from synthetic and real wastewaters. Chemosphere 327, 138532 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, D., Junker, A. L., Sillanpää, M., Jiang, Y. & Wei, Z. Photo-based advanced oxidation processes for zero pollution: where are we now? Engineering 23, 19–23 (2023).

    Article 

    Google Scholar 

  • Dey, A. K., Mishra, S. R. & Ahmaruzzaman, M. Solar light-based advanced oxidation processes for degradation of methylene blue dye using novel Zn-modified CeO2@biochar. Environ. Sci. Pollut. Res. 30, 53887–53903 (2023).

    Article 
    CAS 

    Google Scholar 

  • Su, L., Wang, P., Ma, X., Wang, J. & Zhan, S. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-Fenton process. Angew. Chem. Int. Ed. 60, 21261–21266 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yang, Q. et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 378, 122149 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yang, J., Zhu, M. & Dionysiou, D. D. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. 189, 116627 (2021).

    Article 
    CAS 

    Google Scholar 

  • Weng, B., Qi, M.-Y., Han, C., Tang, Z.-R. & Xu, Y.-J. Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal. 9, 4642–4687 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Q., Chen, Q., Tong, Y. & Wang, J. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bi, Z. et al. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: a review. Environ. Res. 260, 119592 (2024).

    Article 
    CAS 

    Google Scholar 

  • Chen, M. et al. Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chin. Chem. Lett. 35, 109336 (2024).

    Article 
    CAS 

    Google Scholar 

  • Oh, V. B.-Y., Ng, S.-F. & Ong, W.-J. Is photocatalytic hydrogen production sustainable? Assessing the potential environmental enhancement of photocatalytic technology against steam methane reforming and electrocatalysis. J. Clean. Prod. 379, 134673 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wu, F., Zhou, Z. & Hicks, A. L. Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ. Sci. Technol. 53, 4078–4087 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction. Nat. Commun. 15, 917 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ghanbarzadeh Lak, M., Sabour, M. R., Ghafari, E. & Amiri, A. Energy consumption and relative efficiency improvement of photo-Fenton — optimization by RSM for landfill leachate treatment, a case study. Waste Manage 79, 58–70 (2018).

    Article 
    CAS 

    Google Scholar 

  • Barndõk, H., Blanco, L., Hermosilla, D. & Blanco, Á. Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane. Chem. Eng. J. 284, 112–121 (2016).

    Article 

    Google Scholar 

  • Santos, L. V. de S., Meireles, A. M. & Lange, L. C. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2. J. Environ. Manage. 154, 8–12 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kang, W. et al. Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor. J. Hazard. Mater. 405, 124277 (2021).

    Article 
    CAS 

    Google Scholar 

  • Khaleel, G. F., Ismail, I. & Abbar, A. H. Application of solar photo-electro-Fenton technology to petroleum refinery wastewater degradation: optimization of operational parameters. Heliyon 9, e15062 (2023).

    Article 
    CAS 

    Google Scholar 

  • Anipsitakis, G. P. & Dionysiou, D. D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38, 3705–3712 (2004).

    Article 
    CAS 

    Google Scholar 

  • De Laat, J. & Gallard, H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol. 33, 2726–2732 (1999).

    Article 

    Google Scholar 

  • Feng, W. & Nansheng, D. Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere 41, 1137–1147 (2000).

    Article 
    CAS 

    Google Scholar 

  • Sun, M. et al. New insights into photo-Fenton chemistry: the overlooked role of excited ironIII species. Environ. Sci. Technol. 58, 10817–10827 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yang, X.-j., Xu, X.-m., Xu, J. & Han, Y.-f. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. J. Am. Chem. Soc. 135, 16058–16061 (2013).

    Article 
    CAS 

    Google Scholar 

  • Li, M. et al. Iron-organic frameworks as effective Fenton-like catalysts for peroxymonosulfate decomposition in advanced oxidation processes. npj Clean Water 6, 37 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: role of complexation of Fe3+ with hydroxyl group in phloroglucinol. Chem. Eng. J. 313, 938–945 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zheng, J., Li, Y. & Zhang, S. Engineered nanoconfinement activates Fenton catalyst at neutral pH: mechanism and kinetics study. Appl. Catal. B 343, 123555 (2024).

    Article 
    CAS 

    Google Scholar 

  • Clarizia, L., Russo, D., Di Somma, I., Marotta, R. & Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: a review. Appl. Catal. B 209, 358–371 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl. Catal. B 255, 117739 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brillas, E. Fenton, photo-Fenton, electro-Fenton, and their combined treatments for the removal of insecticides from waters and soils. A review. Sep. Purif. Technol. 284, 120290 (2022).

    Article 
    CAS 

    Google Scholar 

  • Heidari, Z., Pelalak, R. & Zhou, M. A critical review on the recent progress in application of electro-Fenton process for decontamination of wastewater at near-neutral pH. Chem. Eng. J. 474, 145741 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ahile, U. J., Wuana, R. A., Itodo, A. U., Sha’Ato, R. & Dantas, R. F. A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: current trends, knowledge gap and future studies. Sci. Total Environ. 710, 134872 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vallés, I. et al. On the relevant role of iron complexation for the performance of photo-Fenton process at mild pH: role of ring substitution in phenolic ligand and interaction with halides. Appl. Catal. B 331, 122708 (2023).

    Article 

    Google Scholar 

  • Li, W.-Q. et al. Boosting photo-Fenton process enabled by ligand-to-cluster charge transfer excitations in iron-based metal organic framework. Appl. Catal. B 302, 120882 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rodríguez, M., Bussi, J. & Andrea De León, M. Application of pillared raw clay-base catalysts and natural solar radiation for water decontamination by the photo-Fenton process. Sep. Purif. Technol. 259, 118167 (2021).

    Article 

    Google Scholar 

  • Wu, Q. et al. Visible-light-driven iron-based heterogeneous photo-Fenton catalysts for wastewater decontamination: a review of recent advances. Chemosphere 313, 137509 (2023).

    Article 
    CAS 

    Google Scholar 

  • Deng, G. et al. Ferryl ion in the photo-Fenton process at acidic pH: occurrence, fate, and implications. Environ. Sci. Technol. 57, 18586–18596 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gao, X. et al. New insight into the mechanism of symmetry-breaking charge separation induced high-valent iron(IV) for highly efficient photodegradation of organic pollutants. Appl. Catal. B 321, 122066 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jiang, J. et al. Spin state-dependent in-situ photo-Fenton-like transformation from oxygen molecule towards singlet oxygen for selective water decontamination. Water Res. 244, 120502 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lian, Z. et al. Photo-self-Fenton reaction mediated by atomically dispersed Ag−Co photocatalysts toward efficient degradation of organic pollutants. Angew. Chem. Int. Ed. 63, e202318927 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ciggin, A. S., Sarica, E. S., Doğruel, S. & Orhon, D. Impact of ultrasonic pretreatment on Fenton-based oxidation of olive mill wastewater — towards a sustainable treatment scheme. J. Clean. Prod. 313, 127948 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ahmed, Y., Zhong, J., Yuan, Z. & Guo, J. Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. J. Hazard. Mater. 430, 128408 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. & Cheng, H. Autocatalytic effect of in situ formed (hydro)quinone intermediates in Fenton and photo-Fenton degradation of non-phenolic aromatic pollutants and chemical kinetic modeling. Chem. Eng. J. 449, 137812 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y., Yu, M., Zhang, Q., Sun, X. & Niu, J. Regulating electron distribution of Fe/Ni-N4P2 single sites for efficient photo-Fenton process. J. Hazard. Mater. 440, 129724 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gualda-Alonso, E. et al. Continuous solar photo-Fenton for wastewater reclamation in operational environment at demonstration scale. J. Hazard. Mater. 459, 132101 (2023).

    Article 
    CAS 

    Google Scholar 

  • Silva, T. F. C. V., Fonseca, A., Saraiva, I., Boaventura, R. A. R. & Vilar, V. J. P. Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment. Chem. Eng. J. 283, 76–88 (2016).

    Article 
    CAS 

    Google Scholar 

  • Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment — a critical review. Water Res. 139, 118–131 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gualda-Alonso, E. et al. Large-scale raceway pond reactor for CEC removal from municipal WWTP effluents by solar photo-Fenton. Appl. Catal. B 319, 121908 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gualda-Alonso, E., Soriano-Molina, P., García Sánchez, J. L., Casas López, J. L. & Sánchez Pérez, J. A. Mechanistic modeling of solar photo-Fenton with Fe3+-NTA for microcontaminant removal. Appl. Catal. B 318, 121795 (2022).

    Article 
    CAS 

    Google Scholar 

  • Duan, X., Sun, H. & Wang, S. Metal-free carbocatalysis in advanced oxidation reactions. Acc. Chem. Res. 51, 678–687 (2018).

    Article 
    CAS 

    Google Scholar 

  • Han, B. et al. Microenvironment engineering of single-atom catalysts for persulfate-based advanced oxidation processes. Chem. Eng. J. 447, 137551 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lee, J., von Gunten, U. & Kim, J.-H. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54, 3064–3081 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, S., Zheng, H. & Tratnyek, P. G. Advanced redox processes for sustainable water treatment. Nat. Water 1, 666–681 (2023).

    Article 
    CAS 

    Google Scholar 

  • Guo, R. et al. Catalytic degradation of lomefloxacin by photo-assisted persulfate activation on natural hematite: performance and mechanism. Chin. Chem. Lett. 33, 3809–3817 (2022).

    Article 
    CAS 

    Google Scholar 

  • He, S., Chen, Y., Li, X., Zeng, L. & Zhu, M. Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: a critical review. ACS EST. Eng 2, 527–546 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y.-J. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 13, 3005 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yin, R. et al. Near-infrared light to heat conversion in peroxydisulfate activation with MoS2: a new photo-activation process for water treatment. Water Res. 190, 116720 (2021).

    Article 
    CAS 

    Google Scholar 

  • Weng, Z. et al. Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100% selectivity. Angew. Chem. Int. Ed. 62, e202310934 (2023).

    Article 
    CAS 

    Google Scholar 

  • Yan, Y. et al. Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environ. Sci. Technol. 57, 12153–12179 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gan, P. et al. The degradation of municipal solid waste incineration leachate by UV/persulfate and UV/H2O2 processes: the different selectivity of SO4•− and •OH. Chemosphere 311, 137009 (2023).

    Article 
    CAS 

    Google Scholar 

  • Guerra-Rodríguez, S. et al. Pilot-scale sulfate radical-based advanced oxidation for wastewater reuse: simultaneous disinfection, removal of contaminants of emerging concern, and antibiotic resistance genes. Chem. Eng. J. 477, 146916 (2023).

    Article 

    Google Scholar 

  • Wang, Y., Duan, X., Xie, Y., Sun, H. & Wang, S. Nanocarbon-based catalytic ozonation for aqueous oxidation: engineering defects for active sites and tunable reaction pathways. ACS Catal. 10, 13383–13414 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mundy, B. et al. A review of ozone systems costs for municipal applications. Report by the municipal committee — IOA Pan American group. Ozone Sci. Eng. 40, 266–274 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhou, H. & Smith, D. W. Ozone mass transfer in water and wastewater treatment: experimental observations using a 2D laser particle dynamics analyzer. Water Res. 34, 909–921 (2000).

    Article 
    CAS 

    Google Scholar 

  • Lu, J. et al. Efficient mineralization of aqueous antibiotics by simultaneous catalytic ozonation and photocatalysis using MgMnO3 as a bifunctional catalyst. Chem. Eng. J. 358, 48–57 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bessegato, G. G., Cardoso, J. C., da Silva, B. F. & Zanoni, M. V. B. Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in Acid Yellow 1 mineralization. Appl. Catal. B 180, 161–168 (2016).

    Article 
    CAS 

    Google Scholar 

  • Mehrjouei, M., Müller, S. & Möller, D. A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209–219 (2015).

    Article 
    CAS 

    Google Scholar 

  • Beltrán, F. J., Aguinaco, A., García-Araya, J. F. & Oropesa, A. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res. 42, 3799–3808 (2008).

    Article 

    Google Scholar 

  • Yu, D., Li, L., Wu, M. & Crittenden, J. C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B 251, 66–75 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xiao, J., Xie, Y., Rabeah, J., Brückner, A. & Cao, H. Visible-light photocatalytic ozonation using graphitic C3N4 catalysts: a hydroxyl radical manufacturer for wastewater treatment. Acc. Chem. Res. 53, 1024–1033 (2020).

    Article 
    CAS 

    Google Scholar 

  • Xiao, J. et al. Is C3N4 chemically stable toward reactive oxygen species in sunlight-driven water treatment? Environ. Sci. Technol. 51, 13380–13387 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lincho, J., Zaleska-Medynska, A., Martins, R. C. & Gomes, J. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: an overview. Sci. Total Environ. 837, 155776 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ye, M., Chen, Z., Liu, X., Ben, Y. & Shen, J. Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene. J. Hazard. Mater. 167, 1021–1027 (2009).

    Article 
    CAS 

    Google Scholar 

  • Andreozzi, R., Caprio, V., Insola, A. & Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999).

    Article 
    CAS 

    Google Scholar 

  • Mecha, A. C., Onyango, M. S., Ochieng, A. & Momba, M. N. B. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: catalyst reuse, energy requirements and toxicity assessment. Chemosphere 186, 669–676 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mehrjouei, M., Müller, S. & Möller, D. Energy consumption of three different advanced oxidation methods for water treatment: a cost-effectiveness study. J. Clean. Prod. 65, 178–183 (2014).

    Article 
    CAS 

    Google Scholar 

  • Mecha, A. C., Onyango, M. S., Ochieng, A., Fourie, C. J. S. & Momba, M. N. B. Synergistic effect of UV–vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: a comparative study. J. Catal. 341, 116–125 (2016).

    Article 
    CAS 

    Google Scholar 

  • Moreira, F. C., Boaventura, R. A. R., Brillas, E. & Vilar, V. J. P. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B 202, 217–261 (2017).

    Article 
    CAS 

    Google Scholar 

  • Pandey, A. K. et al. Utilization of solar energy for wastewater treatment: challenges and progressive research trends. J. Environ. Manage. 297, 113300 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pham, C. V., Escalera-López, D., Mayrhofer, K., Cherevko, S. & Thiele, S. Essentials of high performance water electrolyzers — from catalyst layer materials to electrode engineering. Adv. Energy Mater. 11, 2101998 (2021).

    Article 
    CAS 

    Google Scholar 

  • Valero, D., García-García, V., Expósito, E., Aldaz, A. & Montiel, V. Electrochemical treatment of wastewater from almond industry using DSA-type anodes: direct connection to a PV generator. Sep. Purif. Technol. 123, 15–22 (2014).

    Article 
    CAS 

    Google Scholar 

  • Huang, Y. et al. The efficient abatement of contaminants of emerging concern by LED-UV275nm/electrochemical chlorine for wastewater reuse: kinetics, degradation pathways, and cytotoxicity. Chem. Eng. J. 480, 148032 (2024).

    Article 
    CAS 

    Google Scholar 

  • Otter, P. et al. Economic evaluation of water supply systems operated with solar-driven electro-chlorination in rural regions in Nepal, Egypt and Tanzania. Water Res. 187, 116384 (2020).

    Article 
    CAS 

    Google Scholar 

  • Koiki, B. A. et al. Sulfate radical in (photo)electrochemical advanced oxidation processes for water treatment: a versatile approach. J. Phys. Chem. Lett. 14, 8880–8889 (2023).

    Article 
    CAS 

    Google Scholar 

  • Son, A. et al. Persulfate enhanced photoelectrochemical oxidation of organic pollutants using self-doped TiO2 nanotube arrays: effect of operating parameters and water matrix. Water Res. 191, 116803 (2021).

    Article 
    CAS 

    Google Scholar 

  • García-Espinoza, J. D., Robles, I., Durán-Moreno, A. & Godínez, L. A. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: a review. Chemosphere 274, 129957 (2021).

    Article 

    Google Scholar 

  • Vanags, M. et al. Sol-gel auto-combustion synthesis of Ca2Fe2O5 brownmillerite nanopowders and thin films for advanced oxidation photoelectrochemical water treatment in visible light. J. Environ. Chem. Eng. 7, 103224 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yao, T., An, X., Han, H., Chen, J. Q. & Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 8, 1800210 (2018).

    Article 

    Google Scholar 

  • Lu, S. & Zhang, G. Recent advances on inactivation of waterborne pathogenic microorganisms by (photo) electrochemical oxidation processes: design and application strategies. J. Hazard. Mater. 431, 128619 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fekadu, S. et al. Treatment of healthcare wastewater using the peroxi-photoelectrocoagulation process: predictive models for COD, color removal and electrical energy consumption. J. Water Process Eng. 41, 102068 (2021).

    Article 

    Google Scholar 

  • Rengifo-Herrera, J. A. & Pulgarin, C. Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges. Chem. Eng. J. 477, 146875 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zeng, J. et al. Nanomaterials enabled photoelectrocatalysis for removing pollutants in the environment and food. Trends Analyt. Chem. 166, 117187 (2023).

    Article 
    CAS 

    Google Scholar 

  • Song, Y., Zhang, J.-Y., Yang, J., Bo, T. & Ma, J.-F. Highly efficient photoelectrocatalytic oxidation of arsenic(iii) with a polyoxometalate-thiacalix[4]arene-based metal–organic complex-modified bismuth vanadate photoanode. Green Chem. 26, 3874–3883 (2024).

    Article 
    CAS 

    Google Scholar 

  • Jiao, Y., Ma, L., Tian, Y. & Zhou, M. A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal. Chemosphere 252, 126483 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhou, W. et al. Rates of H2O2 electrogeneration by reduction of anodic O2 at RVC foam cathodes in batch and flow-through cells. Electrochim. Acta 277, 185–196 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dang, Q. et al. Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment. Nat. Commun. 14, 8413 (2023).

    Article 
    CAS 

    Google Scholar 

  • Divyapriya, G. et al. Treatment of real wastewater by photoelectrochemical methods: an overview. Chemosphere 276, 130188 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tedesco, G. C. & Moraes, P. B. Innovative design of a continuous flow photoelectrochemical reactor: hydraulic design, CFD simulation and prototyping. J. Environ. Chem. Eng. 9, 105917 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tao, Y. et al. Near-infrared-driven photoelectrocatalytic oxidation of urea on La-Ni-based perovskites. Chem. Eng. J. 446, 137240 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vivar, M., Skryabin, I., Everett, V. & Blakers, A. A concept for a hybrid solar water purification and photovoltaic system. Sol. Energy Mater. Sol. Cell 94, 1772–1782 (2010).

    Article 
    CAS 

    Google Scholar 

  • Sboui, M. et al. Fabrication of electrically conductive TiO2/PANI/PVDF composite membranes for simultaneous photoelectrocatalysis and microfiltration of azo dye from wastewater. Appl. Catal. A 644, 118837 (2022).

    Article 
    CAS 

    Google Scholar 

  • Garg, R. et al. Sputtering thin films: materials, applications, challenges and future directions. Adv. Colloid Interface Sci. 330, 103203 (2024).

    Article 
    CAS 

    Google Scholar 

  • Noked, M. et al. Electrochemical thin layers in nanostructures for energy storage. Acc. Chem. Res. 49, 2336–2346 (2016).

    Article 
    CAS 

    Google Scholar 

  • Jeon, T. H., Koo, M. S., Kim, H. & Choi, W. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal. 8, 11542–11563 (2018).

    Article 
    CAS 

    Google Scholar 

  • Garza-Campos, B. et al. Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis. J. Hazard. Mater. 319, 34–42 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Efficient photo-electro-Fenton catalysis of perfluorooctanoic acid with MOFs based 2D CoFe nanosheets: oxygen vacancy-mediated adsorption and mineralization ability. Chem. Eng. J. 483, 149385 (2024).

    Article 
    CAS 

    Google Scholar 

  • Marinho, B. A. et al. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: analytical methods, mechanisms, simulations, catalysts and reactors. J. Clean. Prod. 343, 131061 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zheng, J., Zhang, P., Li, X., Ge, L. & Niu, J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: mechanisms and research gaps. Chemosphere 343, 140211 (2023).

    Article 
    CAS 

    Google Scholar 

  • Braham, R. J. & Harris, A. T. Review of major design and scale-up considerations for solar photocatalytic reactors. Ind. Eng. Chem. Res. 48, 8890–8905 (2009).

    Article 
    CAS 

    Google Scholar 

  • Salazar, L. M., Grisales, C. M. & Garcia, D. P. How does intensification influence the operational and environmental performance of photo-Fenton processes at acidic and circumneutral pH. Environ. Sci. Pollut. Res. 26, 4367–4380 (2019).

    Article 
    CAS 

    Google Scholar 

  • Meng, T., Sun, W., Su, X. & Sun, P. The optimal dose of oxidants in UV-based advanced oxidation processes with respect to primary radical concentrations. Water Res. 206, 117738 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xu, S.-L. et al. Expanding the pH range of Fenton-like reactions for pollutant degradation: the impact of acidic microenvironments. Water Res. 270, 122851 (2025).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Enhanced orange II removal using Fe/Mn/Mg2-LDH activated peroxymonosulfate: synergistic radical oxidation and adsorption. Catalysts 14, 380 (2024).

    Article 
    CAS 

    Google Scholar 

  • Binjhade, R., Mondal, R. & Mondal, S. Continuous photocatalytic reactor: critical review on the design and performance. J. Environ. Chem. Eng. 10, 107746 (2022).

    Article 
    CAS 

    Google Scholar 

  • Grčić, I. & Li Puma, G. Six-flux absorption-scattering models for photocatalysis under wide-spectrum irradiation sources in annular and flat reactors using catalysts with different optical properties. Appl. Catal. B 211, 222–234 (2017).

    Article 

    Google Scholar 

  • Wu, Z. et al. In situ infared optical fiber sensor monitoring reactants and products changes during photocatalytic reaction. Anal. Chem. 97, 1229–1235 (2025).

    Article 
    CAS 

    Google Scholar 

  • Li, S., Lin, Y., Liu, G. & Shi, C. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review. Environ. Sci. Process. Impacts 25, 727–740 (2023).

    Article 
    CAS 

    Google Scholar 

  • He, C. et al. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem. Rev. 119, 4471–4568 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, K. et al. Research progress of a composite metal oxide catalyst for VOC degradation. Environ. Sci. Technol. 56, 9220–9236 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yang, Y. et al. Recent advancement and future challenges of photothermal catalysis for VOCs elimination: from catalyst design to applications. Green Energy Env. 8, 654–672 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jiang, C. et al. Modifying defect states in CeO2 by Fe doping: a strategy for low-temperature catalytic oxidation of toluene with sunlight. J. Hazard. Mater. 390, 122182 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sun, P. et al. Efficiently photothermal conversion in a MnOx-based monolithic photothermocatalyst for gaseous formaldehyde elimination. Chin. Chem. Lett. 33, 2564–2568 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shan, C. et al. Recent advances of VOCs catalytic oxidation over spinel oxides: catalyst design and reaction mechanism. Environ. Sci. Technol. 57, 9495–9514 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, J.-J. et al. Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt–rGO–TiO2 composites. Appl. Catal. B 233, 260–271 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hong, J. et al. Photothermal chemistry based on solar energy: from synergistic effects to practical applications. Adv. Sci. 9, 2103926 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ren, Y. et al. Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency. Nat. Commun. 15, 4675 (2024).

    Article 
    CAS 

    Google Scholar 

  • Li, J., Lv, X., Weng, B., Roeffaers, M. B. J. & Jia, H. Engineering light propagation for synergetic photo- and thermocatalysis toward volatile organic compounds elimination. Chem. Eng. J. 461, 142022 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kennedy, J. C. & Datye, A. K. Photothermal heterogeneous oxidation of ethanol over Pt/TiO2. J. Catal. 179, 375–389 (1998).

    Article 
    CAS 

    Google Scholar 

  • Zhang, M. et al. In situ construction of manganese oxide photothermocatalysts for the deep removal of toluene by highly utilizing sunlight energy. Environ. Sci. Technol. 57, 4286–4297 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ma, J., Wang, J. & Dang, Y. Photo-assisted oxidation of gaseous benzene on tungsten-doped MnO2 at lower temperature. Chem. Eng. J. 388, 124387 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yu, X., Zhao, C., Yang, L., Zhang, J. & Chen, C. Photothermal catalytic oxidation of toluene over the Pt–Mn2O3/CN nanocomposite catalyst. EES Catal. 2, 811–822 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wu, P., Jin, X., Qiu, Y. & Ye, D. Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environ. Sci. Technol. 55, 4268–4286 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mateo, D., Cerrillo, J. L., Durini, S. & Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 50, 2173–2210 (2021).

    Article 
    CAS 

    Google Scholar 

  • Agbovhimen Elimian, E., Zhang, M., Sun, Y., He, J. & Jia, H. Harnessing solar energy towards synergistic photothermal catalytic oxidation of volatile organic compounds. Sol. RRL 7, 2300238 (2023).

    Article 
    CAS 

    Google Scholar 

  • Shan, C. et al. Acid etching-induced in situ growth of λ-MnO2 over CoMn spinel for low-temperature volatile organic compound oxidation. Environ. Sci. Technol. 56, 10381–10390 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ma, Y. et al. Understanding the different roles of adsorbed oxygen and lattice oxygen species in the distinct catalytic performance of metal oxides for o-xylene oxidation. ACS Catal. 14, 16624–16638 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. Boosting photothermocatalytic oxidation of toluene over Pt/N-TiO2: the gear effect of light and heat. Environ. Sci. Technol. 58, 7662–7671 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. et al. Electro-assisted photothermal synergy for removal of volatile organic compounds over Au single atoms anchored TiO2 nanotubes. Appl. Catal. B 358, 124338 (2024).

    Article 
    CAS 

    Google Scholar 

  • Ren, L., Yang, X., Sun, X. & Yuan, Y. Synchronizing efficient purification of VOCs in durable solar water evaporation over a highly stable Cu/W18O49@graphene material. Nano Lett. 24, 715–723 (2024).

    Article 
    CAS 

    Google Scholar 

  • Cui, X. et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Efficient photothermal catalytic oxidation enabled by three-dimensional nanochannel substrates. Environ. Sci. Technol. 58, 5153–5161 (2024).

    Article 
    CAS 

    Google Scholar 

  • Leung, S.-F. et al. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett. 12, 3682–3689 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wang, F. et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 46, 4034–4041 (2012).

    Article 
    CAS 

    Google Scholar 

  • Jiang, D., Wang, W., Sun, S., Zhang, L. & Zheng, Y. Equilibrating the plasmonic and catalytic roles of metallic nanostructures in photocatalytic oxidation over Au-modified CeO2. ACS Catal. 5, 613–621 (2015).

    Article 
    CAS 

    Google Scholar 

  • Žerjav, G. et al. Photo, thermal and photothermal activity of TiO2 supported Pt catalysts for plasmon-driven environmental applications. J. Environ. Chem. Eng. 11, 110209 (2023).

    Article 

    Google Scholar 

  • Zhao, J. et al. Interface engineering of Mn3O4/Co3O4 S-scheme heterojunctions to enhance the photothermal catalytic degradation of toluene. J. Hazard. Mater. 452, 131249 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z.-Y. et al. MXene/CdS photothermal–photocatalytic hydrogels for efficient solar water evaporation and synergistic degradation of VOC. J. Mater. Chem. A 12, 10991–11003 (2024).

    Article 
    CAS 

    Google Scholar 

  • Elimian, E. A. et al. Construction of Pt-mTiO2/USY multifunctional catalyst enriched with oxygen vacancies for the enhanced light-driven photothermocatalytic degradation of toluene. Appl. Catal. B 307, 121203 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bi, F. et al. Chlorine-coordinated Pd single atom enhanced the chlorine resistance for volatile organic compound degradation: mechanism study. Environ. Sci. Technol. 56, 17321–17330 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Simulated solar light driven photothermal catalytic purification of toluene over iron oxide supported single atom Pt catalyst. Appl. Catal. B 298, 120612 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kong, J., Xiang, Z., Li, G. & An, T. Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Appl. Catal. B 269, 118755 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wei, L., Yu, C., Yang, K., Fan, Q. & Ji, H. Recent advances in VOCs and CO removal via photothermal synergistic catalysis. Chin. J. Catal. 42, 1078–1095 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ding, X., Liu, W., Zhao, J., Wang, L. & Zou, Z. Photothermal CO2 catalysis toward the synthesis of solar fuel: from material and reactor engineering to techno-economic analysis. Adv. Mater. 37, e2312093 (2025).

    Article 

    Google Scholar 

  • Yu, X. et al. Advances in photothermal catalysis for air pollutants. Chem. Eng. J. 486, 150192 (2024).

    Article 
    CAS 

    Google Scholar 

  • Tackett, B. M., Gomez, E. & Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2, 381–386 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, S. et al. Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis. Nat. Commun. 13, 5305 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zeng, M. et al. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal. 5, 3278–3286 (2015).

    Article 
    CAS 

    Google Scholar 

  • Song, C. et al. Volatile-organic-compound-intercepting solar distillation enabled by a photothermal/photocatalytic nanofibrous membrane with dual-scale pores. Environ. Sci. Technol. 54, 9025–9033 (2020).

    Article 
    CAS 

    Google Scholar 

  • Song, C., Wang, Z., Yin, Z., Xiao, D. & Ma, D. Principles and applications of photothermal catalysis. Chem. Catal. 2, 52–83 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, J. et al. Convergent ambient sunlight-powered multifunctional catalysis for toluene abatement over in situ exsolution of Mn3O4 on perovskite parent. Chem. Eng. J. 412, 128560 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, H. et al. A review of whole-process control of industrial volatile organic compounds in China. J. Environ. Sci. 123, 127–139 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, R. et al. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Sci. Total Environ. 809, 151134 (2022).

    Article 
    CAS 

    Google Scholar 

  • Guaitella, O., Thevenet, F., Puzenat, E., Guillard, C. & Rousseau, A. C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure. Appl. Catal. B 80, 296–305 (2008).

    Article 
    CAS 

    Google Scholar 

  • Taranto, J., Frochot, D. & Pichat, P. Combining cold plasma and TiO2 photocatalysis to purify gaseous effluents: a preliminary study using methanol-contaminated air. Ind. Eng. Chem. Res. 46, 7611–7614 (2007).

    Article 
    CAS 

    Google Scholar 

  • Ma, R., Sun, J., Li, D. H. & Wei, J. J. Review of synergistic photo-thermo-catalysis: mechanisms, materials and applications. Int. J. Hydrog. Energy 45, 30288–30324 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, S., Ang, H. M. & Tade, M. O. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ. Int. 33, 694–705 (2007).

    Article 
    CAS 

    Google Scholar 

  • Nair, V., Muñoz-Batista, M. J., Fernández-García, M., Luque, R. & Colmenares, J. C. Thermo-photocatalysis: environmental and energy applications. ChemSusChem 12, 2098–2116 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Photocatalytic oxidation for volatile organic compounds elimination: from fundamental research to practical applications. Environ. Sci. Technol. 56, 16582–16601 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tomatis, M. et al. Removal of VOCs from waste gases using various thermal oxidizers: a comparative study based on life cycle assessment and cost analysis in China. J. Clean. Prod. 233, 808–818 (2019).

    Article 
    CAS 

    Google Scholar 

  • Baskaran, D., Dhamodharan, D., Behera, U. S. & Byun, H.-S. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. Environ. Res. 251, 118472 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kong, J. et al. The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation. J. Catal. 370, 88–96 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zeng, Y., Zhong, J., Feng, F., Ye, D. & Hu, Y. Synergistic photothermal catalytic oxidation of methanol and toluene mixture over Co-MOFs-derived catalyst: interfacial and promotion effects. Chem. Eng. J. 485, 149720 (2024).

    Article 
    CAS 

    Google Scholar 

  • Sun, H. et al. Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. Appl. Catal. B 108–109, 127–133 (2011).

    Article 

    Google Scholar 

  • Lu, H. et al. Pilot-scale and large-scale Fenton-like applications with nano-metal catalysts: from catalytic modules to scale-up applications. Water Res. 266, 122425 (2024).

    Article 
    CAS 

    Google Scholar 

  • Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K. & Wang, S. A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem. Eng. J. 310, 537–559 (2017).

    Article 
    CAS 

    Google Scholar 

  • Vidal, J., Carvajal, A., Huiliñir, C. & Salazar, R. Slaughterhouse wastewater treatment by a combined anaerobic digestion/solar photoelectro-Fenton process performed in semicontinuous operation. Chem. Eng. J. 378, 122097 (2019).

    Article 
    CAS 

    Google Scholar 

  • Miralles-Cuevas, S. et al. Is the combination of nanofiltration membranes and AOPs for removing microcontaminants cost effective in real municipal wastewater effluents? Environ. Sci. Water Res. 2, 511–520 (2016).

    Article 
    CAS 

    Google Scholar 

  • Rueda-Márquez, J. J., Levchuk, I., Manzano, M. & Sillanpää, M. Toxicity reduction of industrial and municipal wastewater by advanced oxidation processes (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton): a review. Catalysts 10, 612 (2020).

    Article 

    Google Scholar 

  • Nöthe, T., Fahlenkamp, H. & Sonntag, C. V. Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield. Environ. Sci. Technol. 43, 5990–5995 (2009).

    Article 

    Google Scholar 

  • Mehralipour, J., Akbari, H., Adibzadeh, A. & Akbari, H. Tocilizumab degradation via photo-catalytic ozonation process from aqueous. Sci. Rep. 13, 22402 (2023).

    Article 
    CAS 

    Google Scholar 

  • Radjenovic, J. & Sedlak, D. L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292–11302 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lanzarini-Lopes, M., Garcia-Segura, S., Hristovski, K. & Westerhoff, P. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 188, 304–311 (2017).

    Article 
    CAS 

    Google Scholar 




  • Source link

    Leave a Comment