Comprehensive co-expression network reveals the fine-tuning of AsHSFA2c in balancing drought tolerance and growth in oat

Daily Zen Mews


  • Gong, Z. et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 63, 635–674 (2020).

    PubMed 

    Google Scholar 

  • Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Mao, H. et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant 15, 276–292 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119 (2022).

    PubMed 

    Google Scholar 

  • González, E. M. Drought stress tolerance in plants. Int. J. Mol. Sci. 24, 6562 (2023).

  • Kamal, N. et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature 606, 113–119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, Y. et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat. Genet. 54, 1248–1258 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasane, P., Jha, A., Sabikhi, L., Kumar, A. & Unnikrishnan, V. S. Nutritional advantages of oats and opportunities for its processing as value added foods—a review. J. Food Sci. Technol. 52, 662–675 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H., Zhao, Y. & Zhu, J.-K. Thriving under stress: how plants balance growth and the stress response. Dev. Cell 55, 529–543 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Du, P. et al. WRKY transcription factors and OBERON histone-binding proteins form complexes to balance plant growth and stress tolerance. EMBO J. 42, e113639 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv, A. et al. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. Plant Biotechnol. J. 22, 1132–1145 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Xie, Z. et al. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. Plant Commun. 5, 100782 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Yin, C. et al. The dynamics of H2A.Z on SMALL AUXIN UP RNAs regulate abscisic acid-auxin signaling crosstalk in Arabidopsis. J. Exp. Bot. 74, 4158–4168 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Li, X.-T., Feng, X.-Y., Zeng, Z., Liu, Y. & Shao, Z.-Q. Comparative analysis of HSF genes from secale cereale and its triticeae relatives reveal ancient and recent gene expansions. Front. Genet. 12, 801218 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bechtold, U. et al. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J. Exp. Bot. 64, 3467–3481 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, B. et al. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 9, e10961 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, Y. et al. Genome-wide identification, phylogenetic and expression pattern analysis of HSF family genes in the Rye (Secale cereale L.). BMC Plant Biol. 23, 441 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, A.-L. et al. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Rep. 46, 31–36 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, J. et al. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep. 32, 1795–1806 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Li, P.-S. et al. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics 15, 1009 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. A novel heat shock transcription factor (ZmHsf08) negatively regulates salt and drought stress responses in maize. Int. J. Mol. Sci. 22, 11922 (2021).

  • Bi, H. et al. Characterization of the wheat heat shock factor TaHsfA2e-5D conferring heat and drought tolerance in arabidopsis. Int. J. Mol. Sci. 23, 2784 (2022).

  • Jin, X. F. et al. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep. 43, 34–39 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Miao, J. et al. OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. N. Phytol. 227, 1417–1433 (2020).

    CAS 

    Google Scholar 

  • Zhang, S.-W. et al. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol. 151, 1889–1901 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, W.-T. & Fan, W.-G. [Relationship between drought resistance and endogenous hormone content in different citrus species. Ying Yong Sheng Tai Xue Bao 25, 147–154 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, M. et al. Knockout of auxin response factor SlARF4 improves tomato resistance to water deficit. Int. J. Mol. Sci. 22, 3347 (2021).

  • Verma, S., Negi, N. P., Pareek, S., Mudgal, G. & Kumar, D. Auxin response factors in plant adaptation to drought and salinity stress. Physiol. Plant 174, e13714 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, J., Carriquí, M., Xiong, D. & Kang, S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. Physiol. Plant 176, e14443 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Bind, M. A. C. & Rubin, D. B. When possible, report a Fisher-exact P value and display its underlying null randomization distribution. Proc. Natl. Acad. Sci. USA 117, 19151–19158 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butts, J. C. et al. A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 59, 2171–2188 (2024).

  • Wang, C. et al. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 24, 380 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. et al. Autocatalytic biosynthesis of abscisic acid and its synergistic action with auxin to regulate strawberry fruit ripening. Hortic Res 9, uhab076 (2022).

  • Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. Annu Rev. Plant Biol. 61, 651–679 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Fidler, J. et al. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli. Cells 11, 517–527 (2022).

  • Wang, H., Liu, S., Fan, F., Yu, Q. & Zhang, P. A Moss 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODD) gene of flavonoids biosynthesis positively regulates plants abiotic stress tolerance. Front. Plant Sci. 13, 850062 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • You, Z. et al. The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor. Nat. Commun. 14, 5886 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C., Wu, Y. & Wang, X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235, 1157–1169 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Raineri, J., Wang, S., Peleg, Z., Blumwald, E. & Chan, R. L. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress. Plant Mol. Biol. 88, 401–413 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Shim, J. S. et al. Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci. 9, 310 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, L. et al. A novel SAPK10-WRKY87-ABF1 biological pathway synergistically enhance abiotic stress tolerance in transgenic rice (Oryza sativa). Plant Physiol. Biochem. 168, 252–262 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Dehydration-responsive element binding protein 1C, 1E, and 1G promote stress tolerance to chilling, heat, drought, and salt in rice. Front. Plant Sci. 13, 851731 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, D., Wu, W., Abrams, S. R. & Cutler, A. J. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J. Exp. Bot. 59, 2991–3007 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, D. & Qin, G. EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses. Plant Signal Behav. 11, e1150404 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rachowka, J., Anielska-Mazur, A., Bucholc, M., Stephenson, K. & Kulik, A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. Front. Plant Sci. 14, 1135240 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, P. et al. The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation. Mol. Plant 16, 1339–1353 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Abe, H. et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, B.-Q. et al. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. Front. Plant Sci. 13, 952758 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, B.-R. et al. Differential response of phenylpropanoid pathway as linked to hormonal change in two Brassica napus cultivars contrasting drought tolerance. Physiol. Plant 175, e14115 (2023).

    PubMed 

    Google Scholar 

  • Shamloo-Dashtpagerdi, R., Shahriari, A. G., Tahmasebi, A. & Vetukuri, R. R. Potential role of the regulatory miR1119-MYC2 module in wheat (Triticum aestivum L.) drought tolerance. Front Plant Sci. 14, 1161245 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Y. & He, Z. The seesaw action: balancing plant immunity and growth. Sci. Bull. (Beijing) 69, 3–6 (2024).

    PubMed 

    Google Scholar 

  • Zhao, X.-L., Shi, Z.-Y., Peng, L.-T., Shen, G.-Z. & Zhang, J.-L. An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15. N. Biotechnol. 28, 788–797 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Todaka, D. et al. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc. Natl. Acad. Sci. USA 109, 15947–15952 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q. et al. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant Sci. 298, 110570 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, N. et al. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell 30, 1461–1475 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol. 184, 1424–1437 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. OsHsfB4b confers enhanced drought tolerance in transgenic arabidopsis and rice. Int. J. Mol. Sci. 23, 10830 (2022).

  • Chen, X. et al. Maize transcription factor Zmdof1 involves in the regulation of Zm401 gene. Plant Growth Regul. 66, 271–284 (2012).

  • Gupta, S., Arya, G. C., Malviya, N., Bisht, N. C. & Yadav, D. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench. Mol. Biol. Rep. 43, 767–774 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, S. et al. Genome-wide analysis of BpDof genes and the tolerance to drought stress in birch (Betula platyphylla). PeerJ 9, e11938 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasool, F. et al. Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. Plant Physiol. Biochem. 178, 20–30 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. Transcriptional regulation of arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol. 158, 1279–1292 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westwood, J. H. et al. A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Mol. Plant Pathol. 14, 158–170 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Du, F. et al. Dose-dependent AGO1-mediated inhibition of the miRNA165/166 pathway modulates stem cell maintenance in arabidopsis shoot apical meristem. Plant Commun. 1, 100002 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, C., Fang, X., Lu, T. & Dean, C. Antagonistic cotranscriptional regulation through ARGONAUTE1 and the THO/TREX complex orchestrates FLC transcriptional output. Proc. Natl. Acad. Sci. USA 118, e2113757118 (2021).

  • Khan, M. I. R. et al. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. Physiol. Plant 172, 645–668 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hagen G. Auxin signal transduction. Essays Biochem. 58, 1–12 (2015).

  • Verma, V., Ravindran, P. & Kumar, P. P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, H. et al. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J. 92, 557–570 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, P. et al. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. Hortic. Res. 7, 195 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, M., et al. Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass. Int. J. Mol. Sci. 23, 2779 (2022).

  • Zhang, J. et al. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16, 181 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dossa, K., Diouf, D. & Cissé, N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front. Plant Sci. 7, 1522 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • He, F.-J., Zhu, F., Lu, M.-X. & Du, Y.-Z. Comparison of morphology, development and expression patterns of hsf and hsp11.0 of Cotesia chilonis under normal and high temperature. PeerJ 9, e11353 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iqbal, M. Z. et al. A heat shock transcription factor TrHSFB2a of white clover negatively regulates drought, heat and salt stress tolerance in transgenic arabidopsis. Int. J. Mol. Sci. 23, 12769 (2022).

  • Wang, Q. et al. Hsf transcription factor gene family in peanut (Arachis hypogaea L.): genome-wide characterization and expression analysis under drought and salt stresses. Front Plant Sci. 14, 1214732 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, L. et al. Regulation of a single inositol 1-phosphate synthase homeologue by HSFA6B contributes to fibre yield maintenance under drought conditions in upland cotton. Plant Biotechnol. J. 22, 2756–2772 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, Y. et al. RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res. 39, D1141–D1148 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Iwakawa, H.-O. & Tomari, Y. Life of RISC: formation, action, and degradation of RNA-induced silencing complex. Mol. Cell 82, 30–43 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ramasamy, M. et al. A sugarcane G-protein-coupled receptor, ShGPCR1, confers tolerance to multiple abiotic stresses. Front. Plant Sci. 12, 745891 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, M. et al. The osmotic stress-activated receptor-like kinase DPY1 mediates SnRK2 kinase activation and drought tolerance in Setaria. Plant Cell 35, 3782–3808 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Toriyama, T. et al. Sensor histidine kinases mediate ABA and osmostress signaling in the moss Physcomitrium patens. Curr. Biol. 32, 164–175 (2022).

  • Hsu, P.-K., Dubeaux, G., Takahashi, Y. & Schroeder, J. I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 105, 307–321 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, X., Xu, M., Wei, R. & Liu, Y. Expression of OsCAS (calcium-sensing receptor) in an arabidopsis mutant increases drought tolerance. PLoS One 10, e0131272 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, G.-T. et al. Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39, 969–987 (2012).

    PubMed 

    Google Scholar 

  • de Zelicourt, A., Colcombet, J. & Hirt, H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 21, 677–685 (2016).

    PubMed 

    Google Scholar 

  • Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 63, 53–78 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int. J. Mol. Sci. 23, 14824 (2022).

  • Rymen, B. et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator. Plant Physiol. 173, 1750–1762 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, P., Yan, Z., Zong, X., Yan, Q. & Zhang, J. Genome-wide analysis and expression profiles of the dof family in cleistogenes songorica under temperature, salt and ABA treatment. Plants 10, 850 (2021).

  • Zhai, Z. et al. Abscisic acid-responsive transcription factors PavDof2/6/15 mediate fruit softening in sweet cherry. Plant Physiol. 190, 2501–2518 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. GhDof1.7, a Dof transcription factor, plays positive regulatory role under salinity stress in upland cotton. Plants 12, 3740 (2023).

  • Singh, D. & Laxmi, A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front. Plant Sci. 6, 895 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alabd, A. et al. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. Plant Physiol. 192, 1982–1996 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng, L. et al. Transcription factor RcNAC091 enhances rose drought tolerance through the abscisic acid-dependent pathway. Plant Physiol. 193, 1695–1712 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Skirycz, A. et al. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J. 47, 10–24 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Carranco, R., Espinosa, J. M., Prieto-Dapena, P., Almoguera, C. & Jordano, J. Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proc. Natl. Acad. Sci. USA 107, 21908–21913 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Z. et al. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicol. Environ. Saf. 171, 301–312 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sajjad, M., Wei, X., Liu, L., Li, F. & Ge, X. Transcriptome analysis revealed GhWOX4 intercedes myriad regulatory pathways to modulate drought tolerance and vascular growth in cotton. Int. J. Mol. Sci. 22, 898 (2021).

  • Zhu, M.-D. et al. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. Int. J. Mol. Sci. 21, 1857 (2020).

  • Wei, J.-T. et al. GmDof41 regulated by the DREB1-type protein improves drought and salt tolerance by regulating the DREB2-type protein in soybean. Int J. Biol. Macromol. 230, 123255 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, Z. et al. Upregulation of wheat heat shock transcription factor TaHsfC3-4 by ABA contributes to drought tolerance. Int. J. Mol. Sci. 25, 977 (2024).

  • Jan, A., Kitano, H., Matsumoto, H. & Komatsu, S. The rice OsGAE1 is a novel gibberellin-regulated gene and involved in rice growth. Plant Mol. Biol. 62, 439–452 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hong, Y., Yuan, S., Sun, L., Wang, X. & Hong, Y. Cytidinediphosphate-diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. Plant J. 94, 1038–1050 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Gonzalez, N., Vanhaeren, H. & Inzé, D. Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci. 17, 332–340 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • de Lucas, M. & Prat, S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. N. Phytol. 202, 1126–1141 (2014).

    Google Scholar 

  • Iqbal, N. et al. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front. Plant Sci. 8, 475 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. & Hou, X. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front. Plant Sci. 9, 251 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. et al. Comparative transcriptome profiling reveals the multiple levels of crosstalk in phytohormone networks in Brassica napus. Plant Biotechnol. J. 21, 1611–1627 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salehin, M. et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021 (2019).

    PubMed 

    Google Scholar 

  • Gao, J. et al. RRS1 shapes robust root system to enhance drought resistance in rice. N. Phytol. 238, 1146–1162 (2023).

    CAS 

    Google Scholar 

  • Su, P. et al. The Aux/IAA protein TaIAA15-1A confers drought tolerance in Brachypodium by regulating abscisic acid signal pathway. Plant Cell Rep. 42, 385–394 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Iqbal, M. Z. et al. Overexpression of auxin/indole-3-acetic acid gene TrIAA27 enhances biomass, drought, and salt tolerance in Arabidopsis thaliana. Plants 13, (2024).

  • Zhang, Y., Li, Y., Hassan, M. J., Li, Z. & Peng, Y. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biol. 20, 150 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, L. et al. A multi-omics integrative network map of maize. Nat. Genet 55, 144–153 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Li, D. et al. Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato. Nat. Commun. 15, 8652 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, F., Hu, Q., Chen, F. & Jiang, J. F. Transcriptome analysis reveals Vernalization is independent of cold acclimation in Arabidopsis. BMC Genomics 22, 462 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S.-Q. et al. Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis. Environ. Sci. Ecotechnol. 16, 100266 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiol. 192, 2015–2029 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Read, J. F. et al. Single cell transcriptomics reveals cell type specific features of developmentally regulated responses to lipopolysaccharide between birth and 5 years. Front Immunol. 14, 1275937 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol. Plant 16, 694–708 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Yao, J. et al. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J. Exp. Bot. 71, 1527–1539 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, J. et al. GhRCD1 regulates cotton somatic embryogenesis by modulating the GhMYC3-GhMYB44-GhLBD18 transcriptional cascade. N. Phytol. 240, 207–223 (2023).

    CAS 

    Google Scholar 

  • Chen, C. et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 16, 1733–1742 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. Vacuum and co-cultivation agroinfiltration of (Germinated) seeds results in tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize. Front. Plant Sci. 8, 393 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110–117 (2022).

    PubMed 

    Google Scholar 

  • Ishida, Y., Tsunashima, M., Hiei, Y. & Komari, T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 1223, 189–198 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat. Plants 9, 908–925 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, Y. et al. Enhancing wheat regeneration and genetic transformation through overexpression of TaLAX1. Plant Commun. 5, 100738 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Q. et al. DEAD-box helicases modulate dicing body formation in Arabidopsis. Sci. Adv. 7, eabc6266 (2021).

  • Liu, N. et al. A lncRNA fine-tunes salicylic acid biosynthesis to balance plant immunity and growth. Cell Host Microbe 30, 1124–1138 (2022).

  • Zhao, X. et al. Global identification of arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat. Commun. 9, 5056 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, T. et al. Arabidopsis FAR-RED ELONGATED HYPOCOTYL3 integrates age and light signals to negatively regulate leaf senescence. Plant Cell 32, 1574–1588 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. et al. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. Physiol. Plant 175, e13875 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, G. et al. Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress. J. Plant Physiol. 280, 153883 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Tian, T. et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat. Genet. 55, 496–506 (2023).

    CAS 
    PubMed 

    Google Scholar 




  • Source link

    Leave a Comment