Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term “Evapotranspiration”. Water Resour. Res. 56, e2020WR028055, https://doi.org/10.1029/2020wr028055 (2020).
Google Scholar
Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Annals New York Acad. Sci. 1436, 19–35, https://doi.org/10.1111/nyas.13912 (2019).
Google Scholar
Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075, https://doi.org/10.1002/grl.50495 (2013).
Google Scholar
Brocca, L. et al. A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations. Front. Sci. 1, 1190191, https://doi.org/10.3389/fsci.2023.1190191 (2024).
Google Scholar
Miralles, D. G. et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Clim. Chang. 4, 122–126, https://doi.org/10.1038/nclimate2068 (2014).
Google Scholar
Vicente-Serrano, S. M. et al. The uncertain role of rising atmospheric CO2 on global plant transpiration. Earth-Science Rev. 230, 104055, https://doi.org/10.1016/j.earscirev.2022.104055 (2022).
Google Scholar
Zhao, M., A, G., Liu, Y. & Konings, A. G. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang.1–7, https://doi.org/10.1038/s41558-022-01505-3 (2022).
Dorigo, W. et al. Closing the water cycle from observations across scales: Where do we stand? Bull. Am. Meteorol. Soc. 1–95, https://doi.org/10.1175/bams-d-19-0316.1 (2021).
Ezenne, G. I., Eyibio, N. U., Tanner, J. L., Asoiro, F. U. & Obalum, S. E. An overview of uncertainties in evapotranspiration estimation techniques. J. Agrometeorology 25, https://doi.org/10.54386/jam.v25i1.2014 (2023).
Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469, https://doi.org/10.5194/hess-15-453-2011 (2011).
Google Scholar
Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote. Sens. Environ. 112, 901–919 (2008).
Google Scholar
Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote. Sens. Environ. 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019 (2011).
Google Scholar
Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. Royal Society of London Series A- Mathematical and Physical Sciences 193, 120–145 (1948).
Google Scholar
Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather. Rev. 100, 81–92 (1972).
Google Scholar
Monteith, J. L. Evaporation and environment. Symp. Soc. for Exp. Biol. 19, 4 (1965).
Google Scholar
Jung, M., Reichstein, M. & Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6, 2001–2013 (2009).
Google Scholar
Nelson, J. A. et al. X-BASE: The first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X. EGUsphere 2024, 1–51, https://doi.org/10.5194/egusphere-2024-165 (2024).
Google Scholar
Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1 (2019).
Google Scholar
Zhao, W. L. et al. Physics-constrained machine learning of evapotranspiration. Geophys. Res. Lett. 46, 14496–14507, https://doi.org/10.1029/2019gl085291 (2019).
Google Scholar
Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–40, https://doi.org/10.5194/hess-2021-211 (2021).
Google Scholar
Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912, https://doi.org/10.1038/s41467-022-29543-7 (2022).
Google Scholar
ElGhawi, R. et al. Hybrid modeling of evapotranspiration: Inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ. Res. Lett. 18, 034039, https://doi.org/10.1088/1748-9326/acbbe0 (2023).
Google Scholar
Jahromi, M. N. et al. Ten years of GLEAM: A review of scientific advances and applications. In Bozorg-Haddad, O. & Zolghadr-Asli, B. (eds.) Computational Intelligence for Water and Environmental Sciences, 525–540, https://doi.org/10.1007/978-981-19-2519-1_25 (Springer Nature Singapore, Singapore, 2022).
Michel, D. et al. The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspira- tion algorithms. Hydrol. Earth Syst. Sci. 20, 803–822, https://doi.org/10.5194/hess-20-803-2016 (2016).
Google Scholar
Talsma, C. J. et al. Partitioning of evapotranspiration in remote sensing-based models. Agric. For. Meteorol. 260, 131–143, https://doi.org/10.1016/j.agrformet.2018.05.010 (2018).
Google Scholar
Miralles, D. G. et al. The WACMOS-ET project – part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20, 823–842, https://doi.org/10.5194/hess-20-823-2016 (2016).
Google Scholar
Mccabe, M. F. et al. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model. Dev. 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016 (2016).
Google Scholar
Hulsman, P., Keune, J., Koppa, A., Schellekens, J. & Miralles, D. G. Incorporating plant access to groundwater in existing global, satellite-based evaporation estimates. Water Resour. Res. 59, https://doi.org/10.1029/2022WR033731 (2023).
Zhong, F. et al. Revisiting large-scale interception patterns constrained by a synthesis of global experimental data. Hydrol. Earth Syst. Sci. 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022 (2022).
Google Scholar
van Dijk, A. I. J. M. & Bruijnzeel, L. A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. part 1. model description. J. Hydrol. 247, 230–238, https://doi.org/10.1016/s0022-1694(01)00392-4 (2001).
Google Scholar
Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model. Dev. 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017 (2017).
Google Scholar
Miralles, D. G., Gash, J. H., Holmes, T. R. H., de Jeu, R. A. M. & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. Atmospheres 115, D16122, https://doi.org/10.1029/2009jd013530 (2010).
Google Scholar
Gash, J. H. C. & Morton, A. J. An application of the Rutter model to the estimation of the interception loss from Thetford Forest. J. Hydrol. 38, 49–58, https://doi.org/10.1016/0022-1694(78)90131-2 (1978).
Google Scholar
van Dijk, A. I. J. M. & Bruijnzeel, L. A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. part 2. model validation for a tropical upland mixed cropping system. J. Hydrol. 247, 239–262, https://doi.org/10.1016/s0022-1694(01)00393-6 (2001).
Google Scholar
Zhong, F. et al. Multi-Decadal Dynamics of Global Rainfall Interception and Their Drivers. Geophys. Res. Lett. 51, https://doi.org/10.1029/2024gl109295 (2024).
Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote. Sens. Environ. 253, 112165, https://doi.org/10.1016/j.rse.2020.112165 (2021).
Google Scholar
Beck, H. E. et al. MSWX: Global 3-hourly 0.1° bias-corrected meteorological data including near-real-time updates and forecast ensembles. Bull. Am. Meteorol. Soc. 103, E710–E732, https://doi.org/10.1175/bams-d-21-0145.1 (2022).
Google Scholar
Aumann, H. H. et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Transactions on Geosci. Remote. Sens. 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356 (2003).
Google Scholar
Allen, R. G., Tasumi, M. & Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model. J. Irrigation Drainage Eng. 133, 380–394, 10.1061/(asce)0733-9437(2007)133:4(380) (2007).
Thom, A. S. Momentum, mass and heat exchange of plant communities. Q. J. Royal Meteorol. Soc. 18 (1975).
Shuttleworth, W. J. Whole-Canopy Interactions, chap. 22, 316–333 https://doi.org/10.1002/9781119951933.ch22 (John Wiley & Sons, Ltd, 2012).
Garrat, J. R. Surface roughness and local advection, chap. 4, 85–114 (Cambridge University Press, 1994).
Rigden, A. J. & Salvucci, G. D. Evapotranspiration based on equilibrated relative humidity (ETRHEQ): Evaluation over the continental U.S. Water Resour. Res. 51, 2951–2973, https://doi.org/10.1002/2014WR016072 (2015).
Google Scholar
Rains, D. et al. Sentinel-1 backscatter assimilation using support vector regression or the water cloud model at european soil moisture sites. IEEE Geosci. Remote. Sens. Lett. PP, 1–5, https://doi.org/10.1109/lgrs.2021.3073484 (2021).
Lievens, H. et al. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates. Remote. Sens. Environ. 189, 194–210, https://doi.org/10.1016/j.rse.2016.11.022 (2017).
Google Scholar
Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380, https://doi.org/10.1126/science.aaf7891 (2016).
Google Scholar
Haghdoost, S., Koppa, A., Lievens, H. & Miralles, D. G. Improving global evaporation estimation using GRACE and GRACE-FO satellite data assimilation. In EGU General Assembly 2024, Vienna, Austria, EGU24-17588, https://doi.org/10.5194/egusphere-egu24-17588 (2024).
Dorigo, W. et al. ESA CCI Soil Moisture for improved earth system understanding: State-of-the art and future directions. Remote. Sens. Environ. 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001 (2017).
Miralles, D. G. et al. GLEAM4 https://doi.org/10.5281/zenodo.14056079 (2024).
Google Scholar
Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500, https://doi.org/10.1175/bams-d-17-0138.1 (2018).
Google Scholar
Wielicki, B. A. et al. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc. 77, 853–868, 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 (1996).
Google Scholar
Hou, A. Y. et al. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 95, 701–722, https://doi.org/10.1175/bams-d-13-00164.1 (2014).
Google Scholar
Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801, https://doi.org/10.1002/2016gl072235 (2017).
Google Scholar
Miralles, D. G., de Jeu, R. A. M., Gash, J. H., Holmes, T. R. H. & Dolman, A. J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 15, 967–981, https://doi.org/10.5194/hess-15-967-2011 (2011).
Google Scholar
Singer, M. B. et al. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Sci. Data 8, 224, https://doi.org/10.1038/s41597-021-01003-9 (2021).
Google Scholar
Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74, https://doi.org/10.1038/s41597-019-0076-8 (2019).
Google Scholar
Zhang, K. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Scientific Data 11, 445 (2024).
Google Scholar
Teuling, A. J. et al. A regional perspective on trends in continental evaporation. Geophys. Res. Lett. 36, https://doi.org/10.1029/2008gl036584 (2009).
Muñoz-Sabater, J. et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021 (2021).
Google Scholar
Trenberth, K. E., Branstator, G. W. & Arkin, P. A. Origins of the 1988 North American Drought. Science 242, 1640–1645, https://doi.org/10.1126/science.242.4886.1640 (1988).
Google Scholar
García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A Review of the European Summer Heat Wave of 2003. Critical Rev. Environ. Sci. Technol. 40, 267–306, https://doi.org/10.1080/10643380802238137 (2010).
Google Scholar
García-Herrera, R. et al. The European 2016/17 drought. J. Clim. 32, 3169–3187, https://doi.org/10.1175/JCLI-D-18-0331.1 (2019).
Google Scholar
Kerr, E. Brutal drought depresses agriculture, thwarting US and Texas economies. Southwest Econ. 10–13 (2012).
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533, https://doi.org/10.1038/nature03972 (2005).
Google Scholar
Australian Government Bureau of Meteorology. Annual climate summary 2010. Tech. Rep., Australian Government Bureau of Meteorology (2011).
Miralles, D. G., Crow, W. T. & Cosh, M. H. Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations. J. Hydrometeorol. 11, 1423–1429, https://doi.org/10.1175/2010JHM1285.1 (2010).
Google Scholar
Miralles, D. G. et al. h-cel/GLEAM4: First submission. Zenodo [Code] https://doi.org/10.5281/zenodo.14056593 (2024).
Google Scholar
NASA/LARC/SD/ASDC. CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols 1-Hourly Terra-Aqua Edition4A, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEG-1HOUR_L3.004A (2017).
Goddard Earth Sciences Data and Information Services Center. Aqua/AIRS L3 Daily Standard Physical Retrieval (AIRS-only) 1 degree × 1 degree V7.0, https://doi.org/10.5067/UO3Q64CTTS1U (2019).
Huffman, G., Stocker, E., Bolvin, D., Nelkin, E. & Tan, J. GPM IMERG Final Precipitation L3 1 day 0.1 degree × 0.1 degree V07, https://doi.org/10.5067/GPM/IMERGDF/DAY/07 (2023).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. Royal Meteorol. Soc. 146, 1999–2049, https://doi.org/10.1002/qj.3803 (2020).
Google Scholar
Hersbach, H. et al. ERA5 hourly data on single levels from 1940 to present, https://doi.org/10.24381/cds.adbb2d47 (2023).
Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmospheric Chem. Phys. 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019 (2019).
Google Scholar
Copernicus Atmosphere Monitoring Service Atmosphere Data Store. CAMS global greenhouse gas reanalysis (EGG4), https://doi.org/10.24380/8fck-9w87 (2021).
Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J. & Moisander, M. GlobSnow v3.0 snow water equivalent (SWE) https://doi.org/10.1594/PANGAEA.911944 (2020).
Google Scholar
Armstrong, R., Brodzik, M. J., Knowles, K. & Savoie, M. Global monthly EASE-Grid snow water equivalent climatology, version 1 https://doi.org/10.5067/KJVERY3MIBPS (2005).
Google Scholar
Dorigo, W. et al. Soil moisture gridded data from 1978 to present, v201706.0.0., https://doi.org/10.24381/cds.d7782f18 (2017).
Zotta, R.-M. et al. VODCA v2: Multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring. Earth Syst. Sci. Data 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024 (2024).
Google Scholar
Moesinger, L. et al. The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA, https://doi.org/10.5281/zenodo.2575599 (2019).
Myneni, R., Knyazikhin, Y. & Park, T. Mcd15a3h modis/terra+aqua leaf area index/fpar 4-day l4 global 500m sin grid v006 [data set]. nasa eosdis land processes distributed active archive center. accessed 2024-11-19. https://doi.org/10.5067/MODIS/MCD15A3H.006.
Hansen, M. & Song, X. Vegetation continuous fields (VCF) yearly global 0.05 deg. 2018, distributed by NASA EOSDIS Land Processes Distributed Active Archive Center, https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001 (2017).
DiMiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006, distributed by NASA EOSDIS Land Processes Distributed Active Archive Center https://doi.org/10.5067/MODIS/MOD44B.006 (2015).
Google Scholar
Simons, G., Koster, R. & Droogers, P. Hihydrosoil v2.0-high resolution soil maps of global hydraulic properties. Futur. Work. Available from https://www.futurewater.eu/projects/hihydrosoil (2020).