Serra-Llobet, A. et al. Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management From California and Germany. Front Environ Sci 9, (2022).
Pratt, O. P., Beesley, L. S., Pusey, B. J., Setterfield, S. A. & Douglas, M. M. The implications of brief floodplain inundation for local and landscape-scale ecosystem function in an intermittent Australian river. Mar Freshw Res 75, (2024).
Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale1. JAWRA Journal of the American Water Resources Association 46, 211–226 (2010).
Google Scholar
Blöschl, G. et al. Changing climate shifts timing of European floods. Science 1979(357), 588–590 (2017).
Google Scholar
Alifu, H., Hirabayashi, Y., Imada, Y. & Shiogama, H. Enhancement of river flooding due to global warming. Sci Rep 12, (2022).
Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
Google Scholar
Gu, X. H. et al. The changing nature and projection of floods across Australia. J Hydrol (Amst) 584, (2020).
Schmocker-Fackel, P. & Naef, F. More frequent flooding? Changes in flood frequency in Switzerland since 1850. J Hydrol (Amst) 381, 1–8 (2010).
Google Scholar
Smith, A., Freer, J., Bates, P. & Sampson, C. Comparing ensemble projections of flooding against flood estimation by continuous simulation. J Hydrol (Amst) 511, 205–219 (2014).
Google Scholar
Chen, J. et al. Impacts of climate warming on global floods and their implication to current flood defense standards. J Hydrol (Amst) 618, 129236 (2023).
Di Baldassarre, G. Floods in a Changing Climate: Inundation Modelling. Floods in a Changing Climate: Inundation Modelling https://doi.org/10.1017/CBO9781139088411 (2010).
Google Scholar
Douglas, E. M., Vogel, R. M. & Kroll, C. N. Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol (Amst) 240, 90–105 (2000).
Google Scholar
Lawrence, J. et al. Australasia. in Climate Change 2022 – Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pörtner, H.-O. et al.) 1581–1688 (Cambridge University Press, 2022). https://doi.org/10.1017/9781009325844.013.
DAWE. Murray Darling Basin Plan. Preprint at https://www.agriculture.gov.au/water/mdb (2012).
Wasko, C. & Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat Geosci 8, 527–529 (2015).
Google Scholar
Guerreiro, S. B. et al. Detection of continental-scale intensification of hourly rainfall extremes. Nat Clim Chang 8(9), 803–807 (2018).
Google Scholar
Dowdy, A. J. et al. Review of Australian east coast low pressure systems and associated extremes. Clim Dyn 53, 4887–4910 (2019).
Google Scholar
Sharma, A., Wasko, C. & Lettenmaier, D. P. If Precipitation Extremes Are Increasing, Why Aren’t Floods?. Water Resour Res 54, 8545–8551 (2018).
Google Scholar
Bennett, B., Leonard, M., Deng, Y. & Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J Hydrol (Amst) 567, 435–445 (2018).
Google Scholar
Wasko, C., Guo, D., Ho, M., Nathan, R. & Vogel, E. Diverging projections for flood and rainfall frequency curves. J Hydrol (Amst) 620, 129403 (2023).
Ho, M. et al. Changes in flood-associated rainfall losses under climate change. J Hydrol (Amst) 625, 129950 (2023).
Hettiarachchi, S., Wasko, C. & Sharma, A. Can antecedent moisture conditions modulate the increase in flood risk due to climate change in urban catchments?. J Hydrol (Amst) 571, 11–20 (2019).
Google Scholar
Wasko, C. & Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J Hydrol (Amst) 575, 432–441 (2019).
Google Scholar
Wasko, C., Sharma, A. & Westra, S. Reduced spatial extent of extreme storms at higher temperatures. Geophys Res Lett 43, 4026–4032 (2016).
Google Scholar
Di Luca, A., Evans, J. P. & Ji, F. Australian snowpack in the NARCliM ensemble: evaluation, bias correction and future projections. Clim. Dyn. 51, 639–666 (2018).
Google Scholar
Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185, 46–56 (2016).
Google Scholar
Lewis, A. et al. The Australian Geoscience Data Cube — Foundations and lessons learned. Remote Sens Environ 202, 276–292 (2017).
Google Scholar
Chiew, F. H. S., Zheng, H., Post, D. A., Robertson, D. E. & Rojas, R. Hydroclimate Trends and Future Projections in the Murray-Darling Basin. https://www.mdba.gov.au/sites/default/files/publications/mdb-outlook-hydroclimate-literature-review2.pdf (2022).
Barry Hart, Neil Byron, Nick Bond, Carmel Pollino & Michael Stewardson. Murray-Darling Basin, Australia: Its Future Management. (Elsevier, 2020).
MDBA. The 2020 Basin Plan Evaluation. https://www.mdba.gov.au/sites/default/files/pubs/bp-eval-2020-full-report.pdf (2020).
MDBA. Assessment of Environmental Water Requirements for the Proposed Basin Plan: Riverland–Chowilla Floodplain. (2012).
Roberts, J. & Marston, F. Water Regime for Wetland and Floodplain Plants: A Source Book for the Murray-Darling Basin. (Australian Government: National Water Commission, 2011).
Ticehurst, C., Penton, D., Teng, J. & Sengupta, A. Maximum two-monthly surface water extent for MDB from MIM and WOFS – Version 2. CSIRO. Data Collection (2023) https://doi.org/10.25919/s7c2-hc39.
Gallant, A. J. E., Kiem, A. S., Verdon-Kidd, D. C., Stone, R. C. & Karoly, D. J. Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrol Earth Syst Sci 16, 2049–2068 (2012).
Google Scholar
Chiew, F. H. S. & McMahon, T. A. Climate Variability, Climate Change and Water Resources in Australia. Proceedings of the Second International Conference on Climate and Water, Vols 1–3 (1998).
Peel, M. C., McMahon, T. A. & Finlayson, B. L. Continental differences in the variability of annual runoff-update and reassessment. J. Hydrol. (Amst.) 295, 185–197 (2004).
Google Scholar
Chiew, F. H. S. & McMahon, T. A. Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol. Sci. J. 47, 505–522 (2002).
Google Scholar
Hart, B., Byron, N., Bond, N., Pollino, C. & Stewardson, M. Murray-Darling Basin, Australia: Its Future Management (Elsevier, 2020).
Our Story—Coleambally Irrigation. https://www.colyirr.com.au/our-story.
Murray-Darling Basin water markets: trends and drivers 2002–03 to 2018–19. https://daff.ent.sirsidynix.net.au/client/en_AU/ABARES/search/detailnonmodal/ent:$002f$002fSD_ASSET$002f0$002fSD_ASSET:1029942/one.
Academy of Science, A. Investigation of the Causes of Mass Fish Kills in the Menindee Region NSW over the Summer of 2018–2019. www.science.org.au/fish-kills-report (2019).
Vertessy, R. et al. Final Report of the Independent Assessment of the 2018-19 Fish Deaths in the Lower Darling. https://s3-ap-southeast-2.amazonaws.com/figshare-production-eu-latrobe-storage9079-ap-southeast-2/31186917/1185369_VertessyR_2019.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIARRFKZQ25KW2DIYRU/20250110/ap-southeast-2/s3/aws4_request&X-Amz-Date=20250110T060546Z&X-Amz-Expires=10&X-Amz-SignedHeaders=host&X-Amz-Signature=0303ca3c2d4f5f2d4e1e875b257e7083da480bd76ddebf8627b2fb927df249fa (2019).
Jackson, S. & Head, L. Australia’s mass fish kills as a crisis of modern water: Understanding hydrosocial change in the Murray-Darling Basin. Geoforum 109, 44–56 (2020).
Google Scholar
Murray–Darling Basin Authority. The Murray–Darling Basin Authority Annual Report 2012–13 (2013).
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
Google Scholar
Fu, G. et al. Statistical analysis of attributions of climatic characteristics to nonstationary rainfall-streamflow relationship. J. Hydrol. (Amst.) 603, 127017 (2021).
Google Scholar
Prosser, I. P., Chiew, F. H. S. & Smith, M. S. Adapting water management to climate change in the Murray–Darling Basin, Australia. Water (Switzerland) 13, 1–19 (2021).
Speer, M. S., Leslie, L. M., MacNamara, S. & Hartigan, J. From the 1990s climate change has decreased cool season catchment precipitation reducing river heights in Australia’s southern Murray-Darling Basin. Sci. Rep. 11(1), 1–16 (2021).
Google Scholar
Golding, B. & Campbell, C. Learning to be drier in the southern Murray-Darling Basin: Setting the scene for this research volume. Aust. J. Adult Learn. 49, 423–450 (2009).
Google Scholar
Potter, N. J. & Chiew, F. H. S. An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff models. Water Resour. Res. 47 (2011).
Whetton, P. & Chiew, F. Climate change in the Murray-Darling Basin. In Murray-Darling Basin, Australia—Its Future Management (eds Hart, B. T. et al.) 253–274 (Elsevier, 2020). https://doi.org/10.1016/C2018-0-01363-8.
Google Scholar
Post, D. A. et al. Decrease in southeastern Australian water availability linked to ongoing Hadley cell expansion. Earths Future 2, 231–238 (2014).
Google Scholar
CSIRO. Water Availability in the Murray-Darling Basin A Report from CSIRO to the Australian Government. https://publications.csiro.au/rpr/download?pid=legacy:530&dsid=DS1 (2008).
Hart, B. T. The Australian Murray-Darling Basin Plan: Challenges in its implementation (part 1). Int. J. Water Resour. Dev. 32, 819–834 (2016).
Google Scholar
Pittock, J., Williams, J. & Grafton, Q. The Murray-Darling Basin Plan fails to deal adequately with climate change. Water (Basel) 26–30 (2015).
Grafton, R. Q. & Wheeler, S. A. Economics of water recovery in the Murray-Darling Basin, Australia. 46, 55 (2024)
Sheldon, F. et al. Are environmental water requirements being met in the Murray–Darling Basin, Australia? Mar. Freshw. Res. 75 (2024).
Connell, D. & Grafton, R. Q. Water reform in the Murray-Darling Basin. Water Resour. Res. 47 (2011).
Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 21, 49–62 (2007).
Google Scholar
Kingsford, R. T., Biggs, H. C. & Pollard, S. R. Strategic adaptive management in freshwater protected areas and their rivers. Biol. Conserv. 144, 1194–1203 (2011).
Google Scholar
Pittock, J. & Finlayson, C. M. Australia’s MurrayDarling Basin: Freshwater ecosystem conservation options in an era of climate change. Mar. Freshw. Res. 62, 232–243 (2011).
Google Scholar
Commonwealth Environmental Water Holder. Water Management Plan 2023–24. https://www.dcceew.gov.au/sites/default/files/documents/cewh-water-mgt-plan-2023-24-full.pdf (2023).
Tulbure, M. G., Broich, M., Stehman, S. V. & Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 178, 142–157 (2016).
Google Scholar
Heimhuber, V., Tulbure, M. G. & Broich, M. Modeling 25 years of spatio-temporal surface water and inundation dynamics on large river basin scale using time series of Earth observation data. Hydrol. Earth Syst. Sci. 20, 2227–2250 (2016).
Google Scholar
Heimhuber, V., Tulbure, M. G. & Broich, M. Modeling multidecadal surface water inundation dynamics and key drivers on large river basin scale using multiple time series of Earth-observation and river flow data. Water Resour. Res. 53, 1251–1269 (2017).
Google Scholar
Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540(7633), 418–422 (2016).
Google Scholar
Senanayake, I. P., Yeo, I.-Y. & Kuczera, G. A. Three decades of inundation dynamics in an Australian dryland wetland: An eco-hydrological perspective. Remote Sens. 16, 3310 (2024).
Google Scholar
Ceola, S., Laio, F. & Montanari, A. Human-impacted waters: New perspectives from global high-resolution monitoring. Water Resour. Res. 51, 7064–7079 (2015).
Google Scholar
Teng, J. et al. Two-monthly maximum flood water depth spatial timeseries for the MDB. CSIRO. Data Collection (2023). https://doi.org/10.25919/c5ab-h019.
Penton, D. J. et al. The floodplain inundation history of the Murray-Darling Basin through two-monthly maximum water depth maps. Sci. Data 10, 652 (2023).
Google Scholar
Ticehurst, C., Teng, J. & Sengupta, A. Development of a multi-index method based on Landsat reflectance data to map open water in a complex environment. Remote Sens. (Basel) 14 (2022).
Cohen, S. et al. The Floodwater Depth Estimation Tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding. Nat. Hazards Earth Syst. Sci. 19, 2053–2065 (2019).
Teng, J. et al. A comprehensive assessment of floodwater depth estimation models in semiarid regions. Water Resour. Res. 58 (2022).
Marvanek, S. et al. LIDAR enhanced SRTM Digital Elevation Model (DEM) for Murray Darling Basin. CSIRO. Data Collection (2022)
Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
Google Scholar
Chiew, F. H. S. & McMahon, T. A. The applicability of morton and penman evapotranspiration estimates in rainfall-runoff modeling. Water Resour. Bull. 27, 611–620 (1991).
Google Scholar
Morton, F. I. Operational estimates of areal evapo-transpiration and their significance to the science and practice of hydrology. J. Hydrol. (Amst.) 66, 1–76 (1983).
Google Scholar
Chiew, F. H. S. et al. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res. 45 (2009).
Zheng, H. et al. Projections of future streamflow for Australia informed by CMIP6 and previous generations of global climate models. J. Hydrol. (Amst.) 636, 131286 (2024).
Google Scholar
Perrin, C., Michel, C. & Andreassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. (Amst.) 279, 275–289 (2003).
Google Scholar
Chiew, F. H. S. et al. Future runoff projections for Australia and science challenges in producing next generation projections. 1745–1751 Preprint at http://www.mssanz.org.au/modsim2017/L16/chiew.pdf (2017).
Zheng, H., Chiew, F. H. S., Potter, N. J. & Kirono, D. G. C. Projections of water futures for Australia: an update. 1000–1006 Preprint at https://mssanz.org.au/modsim2019/K7/zhengH.pdf (2019).
Viney, N. R. et al. The usefulness of bias constraints in model calibration for regionalisation to ungauged catchments. In 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation 3421–3427 Preprint at http://www.mssanz.org.au/modsim09/I7/viney_I7a.pdf (2009).
Blöschl, G. et al. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 64, 1141–1158 (2019).
Google Scholar
Fowler, K. J. A., Peel, M. C., Western, A. W., Zhang, L. & Peterson, T. J. Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models. Water Resour. Res. 52, 1820–1846 (2016).
Google Scholar
Saft, M., Peel, M. C., Western, A. W., Perraud, J. M. & Zhang, L. Bias in streamflow projections due to climate-induced shifts in catchment response. Geophys. Res. Lett. 43, 1574–1581 (2016).
Google Scholar