Increasing fire risks in cities worldwide under warming climate

Daily Zen Mews


  • Brushlinsky, N. N., Sokolov, S., Wagner, P. & Messerschmidt, B. World Fire Statistics (Center for Fire Statistics of CTIF, 2022).

  • Chen, G. B. et al. Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. Lancet. Planet Health 5, e579–e587 (2021).

    Article 

    Google Scholar 

  • AR6 Synthesis Report: Climate Change 2023 (IPCC, 2023).

  • Schollaert, C. L. et al. Quantifying the smoke-related public health trade-offs of forest management. Nat. Sustain. https://doi.org/10.1038/s41893-023-01253-y (2023).

    Article 

    Google Scholar 

  • Rad, A. M. et al. Human and infrastructure exposure to large wildfires in the United States. Nat. Sustain. 6, 1343–1351 (2023).

    Article 

    Google Scholar 

  • Smith, C., Perkins, O. & Mistry, J. Global decline in subsistence-oriented and smallholder fire use. Nat. Sustain. 5, 542–551 (2022).

    Article 

    Google Scholar 

  • Brown, P. T. et al. Climate warming increases extreme daily wildfire growth risk in California. Nature https://doi.org/10.1038/s41586-023-06444-3 (2023).

  • Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022).

    Article 

    Google Scholar 

  • Reich, P. B. et al. Even modest climate change may lead to major transitions in boreal forests. Nature 608, 540–545 (2022).

    Article 

    Google Scholar 

  • Fire in the United States 2008–2017 (20th Edition) (US Fire Administration, 2019).

  • Johnston, F. H., Williamson, G., Borchers-Arriagada, N., Henderson, S. B. & Bowman, M. J. S. Climate change, landscape fires, and human health: a global perspective. Annu. Rev. Public Health 45, 295–314 (2024).

    Article 

    Google Scholar 

  • Zacharakis, I. & Tsihrintzis, V. A. Environmental forest fire danger rating systems and indices around the globe: a review. Land 12, 194 (2023).

    Article 

    Google Scholar 

  • Ganteaume, A. et al. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 51, 651–662 (2013).

    Article 

    Google Scholar 

  • Mann, M. L. et al. Incorporating anthropogenic influences into fire probability models: effects of human activity and climate change on fire activity in California. PLoS ONE 11, e0153589 (2016).

    Article 

    Google Scholar 

  • Vitolo, C., Di Giuseppe, F., Krzeminski, B. & San-Miguel-Ayanz, J. A 1980–2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices. Sci. Data 6, 190032 (2019).

    Article 

    Google Scholar 

  • Chelli, S. et al. Adaptation of the Canadian Fire Weather Index to Mediterranean forests. Nat. Hazards 75, 1795–1810 (2014).

    Article 

    Google Scholar 

  • Syphard, A. D., Sheehan, T., Rustigian-Romsos, H. & Ferschweiler, K. Mapping future fire probability under climate change: does vegetation matter? PLoS ONE 13, e0201680 (2018).

    Article 

    Google Scholar 

  • Guyette, R. P., Thompson, F. R., Whittier, J., Stambaugh, M. C. & Dey, D. C. Future fire probability modeling with climate change data and physical chemistry. For. Sci. 60, 862–870 (2014).

    Google Scholar 

  • Numbers of Firefighters by Country and Category (European Public Service Union, 2021); www.epsu.org/article/numbers-firefighters-country-and-category

  • Zhuang, J., Payyappalli, V. M., Behrendt, A. & Lukasiewicz, K. Total Cost of Fire in the United States (National Fire Protection Association, 2017).

  • FEMA. National Fire Incident Reporting System Version 5 Fire Data Analysis Guidelines and Issues (United States Fire Administration, 2011).

  • Fire statistics definitions. UK Government www.gov.uk/government/publications/fire-statistics-guidance/fire-statistics-definitions (2021).

  • 2010 Korean Fire Data (Korean Fire Protection Association, 2011).

  • Canadian Centre for Justice Statistics. Fire Statistics in Canada, Selected Observations from the National Fire Information Database 2005 to 2014 (Canadian Association of Fire Chiefs, 2017).

  • Shi, L. & Chew, M. Y. L. Influence of moisture on autoignition of woods in cone calorimeter. J. Fire Sci. 30, 158–169 (2012).

    Article 

    Google Scholar 

  • Hocken, R. Comparison of European Fire Statistics Final Report for the Department for Communities and Local Government (United Kingdom Department for Communities and Local Government, 2012).

  • Anderson, A. & Ezekoye, O. A. Exploration of NFIRS protected populations using geocoded fire incidents. Fire Saf. J. 95, 122–134 (2018).

    Article 

    Google Scholar 

  • EUFireStat—Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts (European Commission, 2021).

  • Hirschler, M. M. in Advances in Fire Retardant Materials Ch. 16, 443–466 (Woodheat Publishing, 2008).

  • Wi, S. W., Yang, S. W., Kim, Y. U., Kang, Y. J. & Kim, S. M. Toxicity characteristics and fire retardant performance of commercially manufactured organic insulation materials for building applications. Constr. Build. Mater. 341, 127898 (2022).

    Article 

    Google Scholar 

  • Ouhaibi, S., Gounni, A., Belouaggadia, N., Ezzine, M. & Lbibb, R. Thermal performance of new ecological material integrated into residential building in semi-arid and cold climates. Appl. Therm. Eng. 181, 115933 (2020).

    Article 

    Google Scholar 

  • Festag, S. The statistical effectiveness of fire protection measures: learning from real fires in Germany. Fire Technol. 57, 1589–1609 (2021).

    Article 

    Google Scholar 

  • Kim, M. et al. Improvement of standards on fire safety performance of externally insulated high-rise buildings: focusing on the case in Korea. J. Build. Eng. 35, 101990 (2021).

    Article 

    Google Scholar 

  • Guo, T. N. & Fu, Z. M. The fire situation and progress in fire safety science and technology in China. Fire Saf. J. 42, 171–182 (2007).

    Article 

    Google Scholar 

  • Incident Recording System—Questions and Lists Version 1.4—(XML Schemas v1-0n) (UK Department for Communities and Local Government, 2009).

  • Dunn, R. J. H., Willett, K. M., Ciavarella, A. & Stott, P. A. Comparison of land surface humidity between observations and CMIP5 models. Earth Syst. Dyn. 8, 719–747 (2017).

    Article 

    Google Scholar 

  • Mu, J. Y., Zhang, S. S. & Yue, Y. The influence of physical environmental factors on older adults in residential care facilities in Northeast China. Health Environ. Res. Des. J. 15, 131–149 (2022).

    Google Scholar 

  • Menebo, M. M. Temperature and precipitation associate with Covid-19 new daily cases: a correlation study between weather and Covid-19 pandemic in Oslo, Norway. Sci. Total Environ. 737, 139659 (2020).

    Article 

    Google Scholar 

  • Georgiadis-Filikas, K., Bakas, I. & Kontoleon, K. Statistical analysis and review of fire incidents data of Greece, with special focus on residential cases 2000–2019. Fire Technol. 58, 3191–3233 (2022).

    Article 

    Google Scholar 

  • Savvakis, N. et al. Environmental effects from the use of traditional biomass for heating in rural areas: a case study of Anogeia, Crete. Environ. Dev. Sustain. 24, 5473–5495 (2022).

    Article 

    Google Scholar 

  • Hall, J. R. Home Fires Involving Air Conditioning, Fans or Related Equipment (National Fire Protection Association, 2010).

  • Luo, Y. X., Li, Q., Jiang, L. R. & Zhou, Y. H. Analysis of Chinese fire statistics during the period 1997–2017. Fire Saf. J. 125, 103400 (2021).

    Article 

    Google Scholar 

  • Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Change 10, 1130–1136 (2020).

    Article 

    Google Scholar 

  • Deb, P. et al. Causes of the widespread 2019–2020 Australian bushfire season. Earths Future https://doi.org/10.1029/2020EF001671 (2020).

    Article 

    Google Scholar 

  • Gaboriau, D. M., Asselin, H., Ali, A. A., Hely, C. & Girardin, M. P. Drivers of extreme wildfire years in the 1965–2019 fire regime of the Tłchǫ First Nation Territory, Canada. Ecoscience 29, 249–265 (2022).

    Article 

    Google Scholar 

  • Stauffer E. in Forensic Investigation of Stolen-Recovered and Other Crime-Related Vehicles Ch. 12, 301–336 (Academic Press, 2006).

  • Highway Vehicle Fires (2014–2016) 1–11 (US Fire Administration, 2018).

  • Rogeau, M. P. & Armstrong, G. W. Quantifying the effect of elevation and aspect on fire return intervals in the Canadian Rocky Mountains. For. Ecol. Manage. 384, 248–261 (2017).

    Article 

    Google Scholar 

  • Mattson, J. Relationships between density, transit, and household expenditures in small urban areas. Transp. Res. Interdisc. Perspect. 8, 100260 (2020).

    Google Scholar 

  • Juan, W. Y., Wu, C. L., Liu, F. W. & Chen, W. S. Fires in waste treatment facilities: challenges and solutions from a fire investigation perspective. Sustainability 15, 9756 (2023).

    Article 

    Google Scholar 

  • Xin, J. & Huang, C. F. Fire risk assessment of residential buildings based on fire statistics from China. Fire Technol. 50, 1147–1161 (2014).

    Article 

    Google Scholar 

  • Richardson, L. R. What fire statistics tell us about our fire and building codes for housing and small buildings and fire risk for occupants of those structures. Fire Mater. 25, 255–271 (2001).

    Article 

    Google Scholar 

  • Filkov, A. I. et al. A review of thermal exposure and fire spread mechanisms in large outdoor fires and the built environment. Fire Saf. J. 140, 103871 (2023).

    Article 

    Google Scholar 

  • Shimizu, Y., Wakakura, M. & Arai, M. Heat accumulations and fire accidents of waste piles. J. Loss Prev. Process Ind. 22, 86–90 (2009).

    Article 

    Google Scholar 

  • Wang, Q. S., Mao, B. B., Stoliarov, S. I. & Sun, J. H. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 73, 95–131 (2019).

    Article 

    Google Scholar 

  • Sun, P., Bisschop, R., Niu, H. C. & Huang, X. Y. A review of battery fires in electric vehicles. Fire Technol. 56, 1361–1410 (2020).

    Article 

    Google Scholar 

  • Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article 

    Google Scholar 

  • Pourhoseingholi, M. A., Vahedi, M. & Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 6, 14–17 (2013).

    Google Scholar 

  • Qi, D. et al. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 377, 1544–1550 (2022).

    Article 

    Google Scholar 

  • Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370, 705–708 (2020).

    Article 

    Google Scholar 

  • Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Article 

    Google Scholar 

  • Chen, Y. et al. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Change 11, 404–410 (2021).

    Article 

    Google Scholar 

  • Haller, H. L., Wurzer, P., Peterlik, C., Gabriel, C. & Cancio, L. C. in Total Burn Care Ch. 5, 36–49 (Elsevier, 2018).

  • Taming Wildfires in the Context of Climate Change (OECD, 2023).

  • Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires (UN Environment Programme, 2022).

  • Partanen, T. M. & Sofiev, M. Forecasting the regional fire radiative power for regularly ignited vegetation fires. Nat. Hazards Earth Syst. Sci 22, 1335–1346 (2022).

    Article 

    Google Scholar 

  • Chavan, D. et al. Estimation of spontaneous waste ignition time for prevention and control of landfill fire. Waste Manag. 139, 258–268 (2022).

    Article 

    Google Scholar 

  • Noble, I. R., Bary, G. A. V. & Gill, A. M. McArthur’s fire-danger meters expressed as equations. Austral. Ecol. 5, 201–203 (1980).

    Article 

    Google Scholar 

  • Schmalzer, P. A. & Foster, T. E. Effects of repeated fire on Florida oak-saw palmetto scrub. Fire Ecol. 18, 16–32 (2022).

    Article 

    Google Scholar 

  • Taillie, P. J. et al. Interacting and non-linear avian responses to mixed-severity wildfire and time since fire. Ecosphere https://doi.org/10.1002/ecs2.2291 (2018).

    Article 

    Google Scholar 

  • Hapsari, D. W. & Khairunnisa, K. A. Integrated reporting implementation in the health sector industry. Australas. Bus. Account. Finance J. 17, 149–162 (2023).

    Article 

    Google Scholar 

  • Cichosz, S., Masek, A. & Dems-Rudnicka, K. Original study on mathematical models for analysis of cellulose water content from absorbance/wavenumber shifts in ATR FT-IR spectrum. Sci. Rep. 12, 19739 (2022).

    Article 

    Google Scholar 

  • Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017).

    Article 

    Google Scholar 

  • Heft-Neal, S., Burney, J., Bendavid, E. & Burke, M. Robust relationship between air quality and infant mortality in Africa. Nature 559, 254–258 (2018).

    Article 

    Google Scholar 

  • Anderson, A. & Ezekoye, O. A. A comparative study assessing factors that influence home fire casualties and fatalities using state fire incident data. J. Fire. Prot. Eng. 23, 51–75 (2013).

    Article 

    Google Scholar 

  • Agarwal, P., Tang, J. L., Narayanan, A. N. L. & Zhuang, J. Big data and predictive analytics in fire risk using weather data. Risk Anal. 40, 1438–1449 (2020).

    Article 

    Google Scholar 

  • The R Project for Statistical Computing. The R Foundation www.r-project.org (2021).

  • World Population Prospects 2022: Summary of Results (United Nations Department of Economic and Social Affairs – Population Division, 2022).

  • Anderson, A. & Janssens, M. A multi-national survey of low-energy and smoking materials ignition fires. Fire Technol. 52, 1709–1735 (2016).

    Article 

    Google Scholar 

  • Buffington, T., Scott, J. G. & Ezekoye, O. A. Combining spatial and sociodemographic regression techniques to predict residential fire counts at the census tract level. Comput. Environ. Urban Syst. 88, 101633 (2021).

    Article 

    Google Scholar 

  • Metadata. National Centers for Environmental Information www.ncei.noaa.gov (2021).

  • Hanif, M. A., Nadeem, F., Tariq, R. & Rashid, U. in Renewable and Alternative Energy Resources Ch. 4, 171–261 (Academic Press, 2022).

  • Stopa-Boryczka, M. Thermal characteristics of the climate of Europe. Misc. Geogr. 7, 55–63 (1996).

    Google Scholar 

  • Coordinates finder. Distancesto www.distancesto.com/coordinates.php (2022).

  • Huang, M. T. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Article 

    Google Scholar 

  • Baksic, N. & Baksic, D. Predicting the fine fuel moisture content in Dalmatian black pine needle litter. Int. J. Wildland Fire 31, 708–719 (2022).

    Article 

    Google Scholar 

  • Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due toglobal warming. Science 346, 851–854 (2014).

    Article 

    Google Scholar 

  • Hansen, J. & Sato, M. Regional climate change and national responsibilities. Environ. Res. Lett. 11, 034009 (2016).

    Article 

    Google Scholar 

  • Liu, Z. H. & Wimberly, M. C. Climatic and landscape influences on fire regimes from 1984 to 2010 in the Western United States. PLoS ONE 10, e0140839 (2015).

    Article 

    Google Scholar 

  • Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).

    Article 

    Google Scholar 




  • Source link

    Leave a Comment